Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Cells ; 10(10)2021 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-34685519

RESUMEN

Axonal degeneration (AxD) is a pathological hallmark of many neurodegenerative diseases. Deciphering the morphological patterns of AxD will help to understand the underlying mechanisms and develop effective therapies. Here, we evaluated the progression of AxD in cortical neurons using a novel microfluidic device together with a deep learning tool that we developed for the enhanced-throughput analysis of AxD on microscopic images. The trained convolutional neural network (CNN) sensitively and specifically segmented the features of AxD including axons, axonal swellings, and axonal fragments. Its performance exceeded that of the human evaluators. In an in vitro model of AxD in hemorrhagic stroke induced by the hemolysis product hemin, we detected a time-dependent degeneration of axons leading to a decrease in axon area, while axonal swelling and fragment areas increased. Axonal swellings preceded axon fragmentation, suggesting that swellings may be reliable predictors of AxD. Using a recurrent neural network (RNN), we identified four morphological patterns of AxD (granular, retraction, swelling, and transport degeneration). These findings indicate a morphological heterogeneity of AxD in hemorrhagic stroke. Our EntireAxon platform enables the systematic analysis of axons and AxD in time-lapse microscopy and unravels a so-far unknown intricacy in which AxD can occur in a disease context.


Asunto(s)
Axones/patología , Aprendizaje Profundo , Degeneración Nerviosa/patología , Neuronas/patología , Animales , Muerte Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Humanos , Enfermedades Neurodegenerativas/patología
3.
Front Aging Neurosci ; 13: 623751, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33584250

RESUMEN

The past decade has brought tremendous progress in diagnostic and therapeutic options for cerebrovascular diseases as exemplified by the advent of thrombectomy in ischemic stroke, benefitting a steeply increasing number of stroke patients and potentially paving the way for a renaissance of neuroprotectants. Progress in basic science has been equally impressive. Based on a deeper understanding of pathomechanisms underlying cerebrovascular diseases, new therapeutic targets have been identified and novel treatment strategies such as pre- and post-conditioning methods were developed. Moreover, translationally relevant aspects are increasingly recognized in basic science studies, which is believed to increase their predictive value and the relevance of obtained findings for clinical application.This review reports key results from some of the most remarkable and encouraging achievements in neurovascular research that have been reported at the 10th International Symposium on Neuroprotection and Neurorepair. Basic science topics discussed herein focus on aspects such as neuroinflammation, extracellular vesicles, and the role of sex and age on stroke recovery. Translational reports highlighted endovascular techniques and targeted delivery methods, neurorehabilitation, advanced functional testing approaches for experimental studies, pre-and post-conditioning approaches as well as novel imaging and treatment strategies. Beyond ischemic stroke, particular emphasis was given on activities in the fields of traumatic brain injury and cerebral hemorrhage in which promising preclinical and clinical results have been reported. Although the number of neutral outcomes in clinical trials is still remarkably high when targeting cerebrovascular diseases, we begin to evidence stepwise but continuous progress towards novel treatment options. Advances in preclinical and translational research as reported herein are believed to have formed a solid foundation for this progress.

4.
Stem Cells Transl Med ; 8(11): 1202-1211, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31313515

RESUMEN

Stem cell therapy is a promising treatment option for neurodegenerative diseases that mostly affect geriatric patients who often suffer from comorbidities requiring multiple medications. However, not much is known about the interactions between stem cells and drugs. Here, we focus on the potential interactions between drugs used to treat the comorbidities or sequelae of neurodegenerative diseases and neuronal stem cells to reveal potential effects on drug safety and efficacy. To determine the potential effects of drugs frequently used in geriatric patients (analgesic, antibiotic, antidepressant, antidiabetic, antihyperlipidemic, and antihypertensive drugs) on neuronal stem cell differentiation and proliferation, we systematically searched PubMed to identify nonreview articles published in English in peer-reviewed journals between January 1, 1991, and June 7, 2018. We identified 5,954 publications, of which 214 were included. Only 62 publications provided the complete data sets required for meta-analysis. We found that antidepressants stimulated neuronal stem cell proliferation but not differentiation under physiologic conditions and increased the proliferation of stem cells in the context of stress. Several other potential interactions were identified, but the limited number of available data sets precludes robust conclusions. Although available data were in most cases insufficient to perform robust meta-analysis, a clear interaction between antidepressants and neuronal stem cells was identified. We reveal other potential interactions requiring further experimental investigation. We recommend that future research addresses such interactions and investigates the best combination of pharmacological interventions and neuronal stem cell treatments for more efficient and safer patient care. Stem Cells Translational Medicine 2019;8:1202-1211.


Asunto(s)
Antidepresivos/farmacología , Diferenciación Celular , Proliferación Celular , Interacciones Farmacológicas , Células-Madre Neurales/patología , Humanos , Células-Madre Neurales/efectos de los fármacos
5.
Regeneration (Oxf) ; 2(3): 120-136, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27168937

RESUMEN

While it is appreciated that global gene expression analyses can provide novel insights about complex biological processes, experiments are generally insufficiently powered to achieve this goal. Here we report the results of a robust microarray experiment of axolotl forelimb regeneration. At each of 20 post-amputation time points, we estimated gene expression for 10 replicate RNA samples that were isolated from 1 mm of heterogeneous tissue collected from the distal limb tip. We show that the limb transcription program diverges progressively with time from the non-injured state, and divergence among time adjacent samples is mostly gradual. However, punctuated episodes of transcription were identified for five intervals of time, with four of these coinciding with well-described stages of limb regeneration-amputation, early bud, late bud, and pallet. The results suggest that regeneration is highly temporally structured and regulated by mechanisms that function within narrow windows of time to coordinate transcription within and across cell types of the regenerating limb. Our results provide an integrative framework for hypothesis generation using this complex and highly informative data set.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...