Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Insect Sci ; 4: 1365651, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38699443

RESUMEN

The female Aedes aegypti mosquito is a vector for several arboviral diseases, due to their blood feeding behavior and their association with urban communities. While ion transport in Ae. aegypti has been studied, much less is known about mechanisms of water transport. Rapid water and ion excretion occurs in the adult female mosquito post blood meal and involves a set of organs including the midgut, Malpighian tubules (MTs), and hindgut. The MTs are responsible for the formation of primary urine and are considered the most important site for active transport of ions. Within the cells of the MTs, along with various ion transporters, there are aquaporin water channels that aid in the transport of water across the tubule cell membrane. Six aquaporin genes have been molecularly identified in Ae. aegypti (AQP1-6) and found to be responsible for the transport of water and in some cases, small solutes such as glycerol. In this study, we used immunohistochemistry to localize AaAQP1, 2, 4, 5, and 6 in the adult female Ae. aegypti, in non-blood fed and post blood feeding (0.5 and 24hr) conditions. We further examined the main water transporting aquaporin, AaAQP1, using western blotting to determine protein abundance changes in isolated MTs pre- and post-blood feeding. Using fluorescence in situ hybridization, aqp1 mRNA was found exclusively in the principal cells of female MTs. Finally, we used immunogold staining with transmission electron microscopy to determine subcellular localization of AaAQP1 in the Malpighian tubules under non-blood fed conditions. Interestingly, AaAQP1 was found to be predominantly in the principal cells of the MTs, dispersed throughout the brush border; however, there was also evidence of some AaAQP1 localization in the stellate cells of the MTs.

2.
Front Insect Sci ; 4: 1374325, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38654748

RESUMEN

The insect ion transport peptide (ITP) and its alternatively spliced variant, ITP-like peptide (ITP-L), belong to the crustacean hyperglycemic hormone family of peptides and are widely conserved among insect species. While limited, studies have characterized the ITP/ITP-L signaling system within insects, and putative functions including regulation of ion and fluid transport, ovarian maturation, and thirst/excretion have been proposed. Herein, we aimed to molecularly investigate Itp and Itp-l expression profiles in the mosquito, Aedes aegypti, examine peptide immunolocalization and distribution within the adult central nervous system, and elucidate physiological roles for these neuropeptides. Transcript expression profiles of both AedaeItp and AedaeItp-l revealed distinct enrichment patterns in adults, with AedaeItp expressed in the brain and AedaeItp-l expression predominantly within the abdominal ganglia. Immunohistochemical analysis within the central nervous system revealed expression of AedaeITP peptide in a number of cells in the brain and in the terminal ganglion. Comparatively, AedaeITP-L peptide was localized solely within the pre-terminal abdominal ganglia of the central nervous system. Interestingly, prolonged desiccation stress caused upregulation of AedaeItp and AedaeItp-l levels in adult mosquitoes, suggesting possible functional roles in water conservation and feeding-related activities. RNAi-mediated knockdown of AedaeItp caused an increase in urine excretion, while knockdown of both AedaeItp and AedaeItp-l reduced blood feeding and egg-laying in females as well as hindered egg viability, suggesting roles in reproductive physiology and behavior. Altogether, this study identifies AedaeITP and AedaeITP-L as key pleiotropic hormones, regulating various critical physiological processes in the disease vector, A. aegypti.

3.
Artículo en Inglés | MEDLINE | ID: mdl-38087465

RESUMEN

This introduction reviews techniques used to examine the distribution and expression of gene transcripts and proteins in a variety of tissues/organs in the medically important global disease vector mosquito, Aedes aegypti Specifically, these methods allow the detection of cell-specific transcript expression by fluorescent in situ hybridization; facilitate immunohistochemical mapping of a protein of interest in whole-mount small tissue/organ samples; examine the subcellular localization of proteins, such as membrane transporters, through sectioning of paraffin-embedded tissue/organ samples; and finally, enable the efficient separation of cytosolic and membrane proteins for western blot analysis without the need for specialized equipment (e.g., ultracentrifuge) in the mosquito Ae. aegypti Such techniques are useful to help answer fundamental questions in mosquito scientific research including (but not limited to) the identification of specific cells in an organ responsible for expressing a receptor of particular interest and necessary for eliciting a response to exogenous signals, including hormones. Moreover, changes in the subcellular localization of specific targets of interest can be assessed both qualitatively and quantitatively, providing insight into transient or long-term physiologically relevant regulation necessary for activity under experimental treatments or varied internal (e.g., development) or external (e.g., environmental stress) factors that might be normally experienced by the organism.

4.
Artículo en Inglés | MEDLINE | ID: mdl-38087467

RESUMEN

Fluorescence in situ hybridization (FISH) is a macromolecular recognition tool that uses RNA or DNA fragments combined with fluorophore- or digoxigenin-coupled nucleotides as probes to examine transcript localization through the presence or absence of complementary sequences in fixed tissues or samples under a fluorescent microscope. FISH technology has been highly effective for mapping genes and constructing a visual map of animal genomes. Here, we describe the application of FISH technology in the Aedes aegypti mosquito, where it is specifically used to localize receptor transcripts in gut tissues/organs. The methods presented highlight the synthesis of RNA probes and describe the 2-d process of incubating the tissues/organs with the RNA probes. We also describe tyramide signal amplification for improved signal detection.

5.
Artículo en Inglés | MEDLINE | ID: mdl-38087468

RESUMEN

Immunohistochemistry (IHC) is a powerful technique used for visualizing cellular components and determining the presence and/or location of proteins or other macromolecules in tissue samples. The classical IHC process involves the detection of epitopes using a highly specific primary antibody. This is followed by a secondary antibody that is coupled to a reporter molecule or fluorophore and capable of binding to the primary antibody and allowing for protein immunodetection. Although IHC does not routinely provide quantitative results compared to an enzyme-linked immunoassay or western blotting, it permits the localization of the proteins in intact tissues. This protocol describes an IHC assay for whole-body Aedes aegypti mosquito tissues that is used to detect small proteins, specifically neuropeptide hormones. This method is useful for protein detection in whole-mount preparations; however, cross-section IHC is recommended to determine if a protein is localized in the apical versus basolateral membrane of tissues/organs or to visualize immunological distribution in larger, more complex preparations.

6.
Artículo en Inglés | MEDLINE | ID: mdl-38087469

RESUMEN

Immunohistochemistry (IHC) is an important technique that permits visualization of cellular components and for determining the presence and/or distribution of proteins or other macromolecules in tissue samples. Normally, IHC involves the detection of epitopes using an antigen-specific primary antibody and a secondary antibody coupled with a reporter molecule or fluorophore that can bind to the primary antibody, allowing for the spatial distribution of a protein of interest to be detected. Although normally IHC does not provide quantitative results compared to techniques such as enzyme-linked immunoassay or western blotting, it permits the localization, expression mapping, and distribution of target proteins in intact tissues. Here, we describe an IHC protocol for examining apical versus basolateral protein staining through sectioning tissue samples from fixed, embedded tissues (e.g., IHC-paraffin) and adding primary antibodies against a target protein. This IHC protocol provides a guide for tissue fixation, sectioning, and staining of tissue samples.

7.
Artículo en Inglés | MEDLINE | ID: mdl-38087470

RESUMEN

Western blot analysis is a well-known and dependable technique used to quantify protein abundance in a wide variety of samples. A major consideration for running a successful western blot is ensuring that the protein to be analyzed is purified appropriately. For work with membrane-bound proteins, traditional methods of protein processing such as the use of high-frequency sonication and ultracentrifugation to separate proteins from the membrane are being replaced with less time-consuming approaches. The use of a membrane fractionation kit, which involves the separation of membrane proteins from soluble (cytosolic) proteins, is effective in allowing for the quantification and analysis of membrane-bound proteins. In this protocol, we describe use of the membrane fractionation kit to isolate membrane-bound proteins, followed by western blot analysis, to observe protein abundance. The protocol involves methods that require organ (or tissue) collection, followed by protein processing, and a 2-d western blot procedure.

8.
Proc Natl Acad Sci U S A ; 120(51): e2308602120, 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38096413

RESUMEN

Like other insects, secretion by mosquito Malpighian tubules (MTs) is driven by the V-type H+-ATPase (VA) localized in the apical membrane of principal cells. In Aedes aegypti, the antidiuretic neurohormone CAPA inhibits secretion by MTs stimulated by select diuretic hormones; however, the cellular effectors of this inhibitory signaling cascade remain unclear. Herein, we demonstrate that the VA inhibitor bafilomycin selectively inhibits serotonin (5HT)- and calcitonin-related diuretic hormone (DH31)-stimulated secretion. VA activity increases in DH31-treated MTs, whereas CAPA abolishes this increase through a NOS/cGMP/PKG signaling pathway. A critical feature of VA activation involves the reversible association of the cytosolic (V1) and membrane (Vo) complexes. Indeed, higher V1 protein abundance was found in membrane fractions of DH31-treated MTs, whereas CAPA significantly decreased V1 abundance in membrane fractions while increasing it in cytosolic fractions. V1 immunolocalization was observed strictly in the apical membrane of DH31-treated MTs, whereas immunoreactivity was dispersed following CAPA treatment. VA complexes colocalized apically in female MTs shortly after a blood meal consistent with the peak and postpeak phases of diuresis. Comparatively, V1 immunoreactivity in MTs was more dispersed and did not colocalize with the Vo complex in the apical membrane at 3 h post blood meal, representing a time point after the late phase of diuresis has concluded. Therefore, CAPA inhibition of MTs involves reducing VA activity and promotes complex dissociation hindering secretion. Collectively, these findings reveal a key target in hormone-mediated inhibition of MTs countering diuresis that provides a deeper understanding of this critical physiological process necessary for hydromineral balance.


Asunto(s)
Neuropéptidos , ATPasas de Translocación de Protón Vacuolares , Animales , Femenino , ATPasas de Translocación de Protón Vacuolares/metabolismo , Túbulos de Malpighi/metabolismo , Neuropéptidos/metabolismo , Vasopresinas/metabolismo , Diuréticos/metabolismo
10.
J Vis Exp ; (174)2021 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-34515676

RESUMEN

Studies of insect physiology, particularly in those species that are vectors of pathogens causing disease in humans and other vertebrates, provide the foundation to develop novel strategies for pest control. Here, a series of methods are described that are routinely utilized to determine the functional roles of neuropeptides and other neuronal factors (i.e., biogenic amines) on the excretory system of the mosquito, Aedes aegypti. The Malpighian tubules (MTs), responsible for primary urine formation, can continue functioning for hours when removed from the mosquito, allowing for fluid secretion measurements following hormone treatments. As such, the Ramsay assay is a useful technique to measure secretion rates from isolated MTs. Ion-selective microelectrodes (ISME) can sequentially be used to measure ion concentrations (i.e., Na+ and K+) in the secreted fluid. This assay allows for the measurement of several MTs at a given time, determining the effects of various hormones and drugs. The Scanning Ion-selective Electrode Technique uses ISME to measure voltage representative of ionic activity in the unstirred layer adjacent to the surface of ion transporting organs to determine transepithelial transport of ions in near real time. This method can be used to understand the role of hormones and other regulators on ion absorption or secretion across epithelia. Hindgut contraction assays are also a useful tool to characterize myoactive neuropeptides, that may enhance or reduce the ability of this organ to remove excess fluid and waste. Collectively, these methods provide insight into how the excretory system is regulated in adult mosquitoes. This is important because functional coordination of the excretory organs is crucial in overcoming challenges such as desiccation stress after eclosion and before finding a suitable vertebrate host to obtain a bloodmeal.


Asunto(s)
Aedes , Neuropéptidos , Aedes/metabolismo , Animales , Humanos , Transporte Iónico , Túbulos de Malpighi , Mosquitos Vectores , Neuropéptidos/metabolismo
11.
Vitam Horm ; 117: 189-225, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34420581

RESUMEN

The Aedes aegypti mosquito is a vector responsible for transmitting various arboviruses including dengue and yellow fever. Their ability to regulate the ionic and water composition of their hemolymph is a major physiological phenomenon, allowing the mosquito to adapt to a range of ecological niches. Hematophagus insects, including the female A. aegypti, face the challenge of excess salt and water intake after a blood meal. Post-prandial diuresis is under rigorous control by neuroendocrine factors, acting on the Malpighian "renal" tubules (MTs), to regulate primary urine production. The MTs are made up of two cell types; mitochondria-rich principal cells, which facilitate active transport of Na+ and K+ cations across the membrane, and thin stellate cells, which allows for transepithelial Cl- secretion. The active driving force responsible for ion transport is the apical V-type H+ ATPase, which creates a proton gradient allowing for Na+ and/or K+ cation exchange through cation/H+ antiporters. Additionally, the basolaterally localized Na+-K+-2Cl- cotransporter (NKCC) is responsible for the transport of these ions from the hemolymph into the principal cells. Numerous studies have examined hormonal regulation of the mosquito MTs and identified several diuretics including serotonin (5HT), a calcitonin-related diuretic hormone 31 (DH31), a corticotropin-related factor like diuretic peptide (DH44), a kinin-related diuretic peptide, as well as anti-diuretic factors including CAPA peptides, all of which are known to regulate fluid and ion transport by the MTs. This review therefore focuses on the control of ionic homeostasis in A. aegypti mosquitoes, emphasizing the importance of the MTs, the channels and transporters involved in maintaining hydromineral balance, and the neuroendocrine regulation of both diuresis and anti-diuresis.


Asunto(s)
Aedes , Aedes/metabolismo , Animales , Vectores de Enfermedades , Diuresis/fisiología , Femenino , Túbulos de Malpighi/metabolismo , Mosquitos Vectores
12.
Proc Natl Acad Sci U S A ; 118(18)2021 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-33893140

RESUMEN

Venoms have evolved independently several times in Lepidoptera. Limacodidae is a family with worldwide distribution, many of which are venomous in the larval stage, but the composition and mode of action of their venom is unknown. Here, we use imaging technologies, transcriptomics, proteomics, and functional assays to provide a holistic picture of the venom system of a limacodid caterpillar, Doratifera vulnerans Contrary to dogma that defensive venoms are simple in composition, D. vulnerans produces a complex venom containing 151 proteinaceous toxins spanning 59 families, most of which are peptides <10 kDa. Three of the most abundant families of venom peptides (vulnericins) are 1) analogs of the adipokinetic hormone/corazonin-related neuropeptide, some of which are picomolar agonists of the endogenous insect receptor; 2) linear cationic peptides derived from cecropin, an insect innate immune peptide that kills bacteria and parasites by disrupting cell membranes; and 3) disulfide-rich knottins similar to those that dominate spider venoms. Using venom fractionation and a suite of synthetic venom peptides, we demonstrate that the cecropin-like peptides are responsible for the dominant pain effect observed in mammalian in vitro and in vivo nociception assays and therefore are likely to cause pain after natural envenomations by D. vulnerans Our data reveal convergent molecular evolution between limacodids, hymenopterans, and arachnids and demonstrate that lepidopteran venoms are an untapped source of novel bioactive peptides.


Asunto(s)
Venenos de Artrópodos/química , Proteínas de Insectos/química , Lepidópteros/química , Neuropéptidos/química , Dolor/genética , Animales , Venenos de Artrópodos/genética , Evolución Molecular , Proteínas de Insectos/genética , Mariposas Nocturnas/química , Neuropéptidos/genética , Péptidos/química , Péptidos/genética , Proteómica , Venenos de Araña/química , Venenos de Araña/genética , Transcriptoma/genética
13.
Front Physiol ; 11: 490, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32528310

RESUMEN

Pyrokinins are structurally related insect neuropeptides, characterized by their myotropic, pheromonotropic and melanotropic roles in some insects, but their function is unclear in blood-feeding arthropods. In the present study, we functionally characterized the pyrokinin-1 and pyrokinin-2 receptors (PK1-R and PK2-R, respectively), in the yellow fever mosquito, Aedes aegypti, using a heterologous cell system to characterize their selective and dose-responsive activation by members of two distinct pyrokinin subfamilies. We also assessed transcript-level expression of these receptors in adult organs and found the highest level of PK1-R transcript in the posterior hindgut (rectum) while PK2-R expression was enriched in the anterior hindgut (ileum) as well as in reproductive organs, suggesting these to be prominent target sites for their peptidergic ligands. In support of this, PRXa-like immunoreactivity (where X = V or L) was localized to innervation along the hindgut. Indeed, we identified a myoinhibitory role for a PK2 on the ileum where PK2-R transcript was enriched. However, although we found that PK1 did not influence myoactivity or Na+ transport in isolated recta, the PRXa-like immunolocalization terminating in close association to the rectal pads and the significant enrichment of PK1-R transcript in the rectum suggests this organ could be a target of PK1 signaling and may regulate the excretory system in this important disease vector species.

14.
Artículo en Inglés | MEDLINE | ID: mdl-32296389

RESUMEN

GPA2/GPB5 and its receptor constitute a glycoprotein hormone-signaling system native to the genomes of most vertebrate and invertebrate organisms. Unlike the well-studied gonadotropins and thyrotropin, the exact function of GPA2/GPB5 remains elusive, and whether it elicits its functions as heterodimers, homodimers or as independent monomers remains unclear. Here, the glycoprotein hormone signaling system was investigated in adult mosquitoes, where GPA2 and GPB5 subunit expression was mapped and modes of its signaling were characterized. In adult Aedes aegypti mosquitoes, GPA2 and GPB5 transcripts co-localized to bilateral pairs of neuroendocrine cells, positioned within the first five abdominal ganglia of the central nervous system. Unlike GPA2/GPB5 homologs in human and fly, GPA2/GPB5 subunits in A. aegypti lacked evidence of heterodimerization. Rather, cross-linking analysis to determine subunit interactions revealed A. aegypti GPA2 and GPB5 subunits may form homodimers, although treatments with independent subunits did not demonstrate receptor activity. Since mosquito GPA2/GPB5 heterodimers were not evident by heterologous expression, a tethered fusion construct was generated for expression of the subunits as a single polypeptide chain to mimic heterodimer formation. Our findings revealed A. aegypti LGR1 elicited constitutive activity with elevated levels of cAMP. However, upon treatment with recombinant tethered GPA2/GPB5, an inhibitory G protein (Gi/o) signaling cascade is initiated and forskolin-induced cAMP production is inhibited. These results further support the notion that heterodimerization is a requirement for glycoprotein hormone receptor activation and provide novel insight to how signaling is achieved for GPA2/GPB5, an evolutionary ancient neurohormone.


Asunto(s)
Aedes , Glicoproteínas/genética , Glicoproteínas/metabolismo , Aedes/genética , Aedes/metabolismo , Secuencia de Aminoácidos , Animales , Perfilación de la Expresión Génica , Glicoproteínas/química , Células HEK293 , Humanos , Unión Proteica , Mapas de Interacción de Proteínas , Multimerización de Proteína , Transducción de Señal/genética
15.
Sci Rep ; 10(1): 1755, 2020 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-32020001

RESUMEN

Insect CAPA neuropeptides are homologs of mammalian neuromedin U and are known to influence ion and water balance by regulating the activity of the Malpighian 'renal' tubules (MTs). Several diuretic hormones are known to increase primary fluid and ion secretion by insect MTs and, in adult female mosquitoes, a calcitonin-related peptide (DH31) called mosquito natriuretic peptide, increases sodium secretion to compensate for the excess salt load acquired during blood-feeding. An endogenous mosquito anti-diuretic hormone was recently described, having potent inhibitory activity against select diuretic hormones, including DH31. Herein, we functionally deorphanized, both in vitro and in vivo, a mosquito anti-diuretic hormone receptor (AedaeADHr) with expression analysis indicating highest enrichment in the MTs where it is localized within principal cells. Characterization using a heterologous in vitro system demonstrated the receptor was highly sensitive to mosquito CAPA neuropeptides while in vivo, AedaeADHr knockdown abolished CAPA-induced anti-diuretic control of DH31-stimulated MTs. CAPA neuropeptides are produced within a pair of neurosecretory cells in each of the abdominal ganglia, whose axonal projections innervate the abdominal neurohaemal organs, where these neurohormones are released into circulation. Lastly, pharmacological inhibition of nitric oxide synthase (NOS) and protein kinase G (PKG) signaling eliminated anti-diuretic activity of CAPA, highlighting the role of the second messenger cGMP and NOS/PKG in this anti-diuretic signaling pathway.


Asunto(s)
Aedes/metabolismo , Fármacos Antidiuréticos/metabolismo , Proteínas de Insectos/metabolismo , Mosquitos Vectores/metabolismo , Neuropéptidos/metabolismo , Transducción de Señal/fisiología , Animales , GMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de GMP Cíclico/metabolismo , Vectores de Enfermedades , Humanos , Túbulos de Malpighi/metabolismo , Óxido Nítrico Sintasa/metabolismo , Sistemas de Mensajero Secundario/fisiología
16.
Front Physiol ; 10: 266, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30941056

RESUMEN

Glycoprotein hormone receptors mediate a diverse range of physiological functions in vertebrate and invertebrate organisms. The heterodimeric glycoprotein hormone GPA2/GPB5 and its receptor LGR1, constitute a recently discovered invertebrate neuroendocrine signaling system that remains to be functionally characterized. We previously reported that LGR1 is expressed in the testes of adult Aedes aegypti mosquitoes, where its immunoreactivity is particularly regionalized. Here, we show that LGR1 immunoreactivity is associated with the centriole adjunct of spermatids and is observed transiently during spermatogenesis in mosquitoes, where it may act to mediate the regulation of flagellar development. RNA interference to downregulate LGR1 expression was accomplished by feeding mosquito larvae with bacteria that produced LGR1-specific dsRNA, which led to defects in spermatozoa, characterized with shortened flagella. LGR1 knockdown mosquitoes also retained ∼60% less spermatozoa in reproductive organs and demonstrated reduced fertility compared to controls. To date, the endocrine regulation of spermatogenesis in mosquitoes remains an understudied research area. The distribution of LGR1 and detrimental effects of its knockdown on spermatogenesis in A. aegypti indicates that this heterodimeric glycoprotein hormone signaling system contributes significantly to the regulation of male reproductive biology in this important disease-vector.

17.
J Exp Biol ; 221(Pt 7)2018 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-29496779

RESUMEN

The mosquito Aedes aegypti is a vector responsible for transmitting various pathogens to humans, and their prominence as chief vectors of human disease is largely due to their anthropophilic blood feeding behaviour. Larval stage mosquitoes must deal with the potential dilution of their haemolymph in freshwater, whereas the haematophagus A. aegypti female faces the challenge of excess ion and water intake after a blood meal. The excretory system, composed of the Malpighian tubules (MTs) and hindgut, is strictly controlled by neuroendocrine factors, responsible for the regulation of diuresis across all developmental stages. The highly studied insect MTs are influenced by a variety of diuretic hormones and, in some insects, anti-diuretic factors. In the present study, we investigated the effects of AedaeCAPA-1 neuropeptide on larval and adult female A. aegypti MTs stimulated with various diuretic factors including serotonin (5-HT), a corticotropin-related factor (CRF) diuretic peptide, a calcitonin-related diuretic hormone (DH31) and a kinin-related diuretic peptide. Overall, our findings establish that AedaeCAPA-1 specifically inhibits secretion of larval and adult MTs stimulated by 5-HT and DH31, whilst having no activity on MTs stimulated by other diuretic factors. Furthermore, although AedaeCAPA-1 acts as an anti-diuretic, it does not influence the relative proportions of cations transported by adult MTs, thus maintaining the kaliuretic activity of 5-HT and natriuretic activity of DH31 In addition, we tested the effects of the second messenger cGMP in adult MTs. We established that cGMP has similar effects to AedaeCAPA-1, strongly inhibiting 5-HT- and DH31-stimulated fluid secretion, but with only minor effects on CRF-stimulated diuresis. Interestingly, although AedaeCAPA-1 has no inhibitory activity on kinin-stimulated fluid secretion, cGMP strongly inhibited fluid secretion by this diuretic hormone, which targets stellate cells specifically. Collectively, these results support that AedaeCAPA-1 inhibits select diuretic factors acting on the principal cells and this probably involves cGMP as a second messenger. Kinin-stimulated diuresis, which targets stellate cells, is also inhibited by cGMP, suggesting that another anti-diuretic factor in addition to AedaeCAPA-1 exists and may utilize cGMP as a second messenger.


Asunto(s)
Aedes/fisiología , Diuréticos/farmacología , Hormonas de Insectos/farmacología , Proteínas de Insectos/genética , Neuropéptidos/genética , Aedes/crecimiento & desarrollo , Animales , Fármacos Antidiuréticos/metabolismo , Femenino , Proteínas de Insectos/metabolismo , Larva/crecimiento & desarrollo , Larva/fisiología , Neuropéptidos/metabolismo , Serotonina/farmacología
18.
Biochem Biophys Res Commun ; 497(2): 550-557, 2018 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-29432729

RESUMEN

To cope with stressful events such as flight, organisms have evolved various regulatory mechanisms, often involving control by endocrine-derived factors. In insects, two stress-related factors include the gonadotropin-releasing hormone-related peptides adipokinetic hormone (AKH) and corazonin (CRZ). AKH is a pleiotropic hormone best known as a substrate liberator of proteins, lipids, and carbohydrates. Although a universal function has not yet been elucidated, CRZ has been shown to have roles in pigmentation, ecdysis or act as a cardiostimulatory factor. While both these neuropeptides and their respective receptors (AKHR and CRZR) have been characterized in several organisms, details on their specific roles within the disease vector, Aedes aegypti, remain largely unexplored. Here, we obtained three A. aegypti AKHR transcript variants and further identified the A. aegypti CRZR receptor. Receptor expression using a heterologous functional assay revealed that these receptors exhibit a highly specific response for their native ligands. Developmental quantitative expression analysis of CRZR revealed enrichment during the pupal and adult stages. In adults, quantitative spatial expression analysis revealed CRZR transcript in a variety of organs including head, thoracic ganglia, primary reproductive organs (ovary and testis), as well as male carcass. This suggest CRZ may play a role in ecdysis, and neuronal expression of CRZR indicates a possible role for CRZ within the nervous system. Quantitative developmental expression analysis of AKHR identified significant transcript enrichment in early adult stages. AKHR transcript was observed in the head, thoracic ganglia, accessory reproductive tissues and the carcass of adult females, while it was detected in the abdominal ganglia and enriched significantly in the carcass of adult males, which supports the known function of AKH in energy metabolism. Collectively, given the enrichment of CRZR and AKHR in the primary and secondary sex organs, respectively, of adult mosquitoes, these neuropeptides may play a role in regulating mosquito reproductive biology.


Asunto(s)
Aedes/metabolismo , Proteínas de Insectos/metabolismo , Receptores de Péptidos/metabolismo , Aedes/genética , Aedes/crecimiento & desarrollo , Animales , Femenino , Expresión Génica , Hormonas de Insectos/metabolismo , Proteínas de Insectos/genética , Masculino , Neuropéptidos/metabolismo , Oligopéptidos/metabolismo , Filogenia , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Ácido Pirrolidona Carboxílico/análogos & derivados , Ácido Pirrolidona Carboxílico/metabolismo , Receptores de Péptidos/genética
19.
Cell Tissue Res ; 369(2): 313-330, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28401307

RESUMEN

GPA2/GPB5 is a glycoprotein hormone found in most bilateral metazoans including the mosquito, Aedes aegypti. To elucidate physiological roles and functions of GPA2/GPB5, we aim to identify prospective target tissues by examining the tissue- and sex-specific expression profile of its receptor, the leucine-rich repeat-containing G protein-coupled receptor 1 (LGR1) in the adult mosquito. Western analyses using a heterologous system with CHO-K1 cells, transiently expressing A. aegypti LGR1, yielded a 112-kDa monomeric band and high-molecular weight multimers, which associated with membrane-protein fractions. Moreover, immunoblot analyses on protein isolated from HEK 293 T cells stably expressing a fusion construct of A. aegypti LGR1-EGFP (LGR1: 105 kDa+EGFP: 27 kDa) yielded a band with a measured molecular weight of 139 kDa that also associated with membrane-protein fractions and upon deglycosylation, migrated as a lower molecular weight band of 132 kDa. Immunocytochemical analysis of HEK 293 T cells stably expressing this fusion construct confirmed EGFP fluorescence and LGR1-like immunoreactivity colocalized primarily to the plasma membrane. Immunohistochemical mapping in adult mosquitoes revealed LGR1-like immunoreactivity is widespread in the alimentary canal. Importantly, LGR1-like immunoreactivity localizes specifically to basolateral regions of epithelia and, in some regions, appeared as punctate intracellular staining, which together indicates a potential role in feeding and/or hydromineral balance. LGR1 transcript expression was also detected in gut regions that exhibited strong LGR1-like immunoreactivity. Interestingly, LGR1 transcript expression and strong LGR1-like immunoreactivity was also identified in reproductive tissues including the testes and ovaries, which together suggests a potential role linked to spermatogenesis and oogenesis in male and female mosquitoes, respectively.


Asunto(s)
Aedes/genética , Proteínas de Insectos/genética , Especificidad de Órganos , Receptores de Superficie Celular/genética , Aedes/metabolismo , Animales , Células CHO , Cricetinae , Cricetulus , Perfilación de la Expresión Génica , Células HEK293 , Humanos , Inmunohistoquímica , Proteínas de Insectos/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores de Superficie Celular/metabolismo , Transfección
20.
Peptides ; 86: 42-54, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27667704

RESUMEN

Pyrokinin-related peptides are pleiotropic factors that are defined by their conserved C-terminal sequence FXPRL-NH2. The pyrokinin nomenclature derives from their originally identified myotropic actions and, as seen in some family members, a blocked amino terminus with pyroglutamate. The black-legged tick, Ixodes scapularis, is well known as a vector of Lyme disease and various other illnesses; however, in comparison to blood-feeding insects, knowledge on its physiology (along with other Ixodid ticks) is rather limited. In this study, we have isolated, examined the expression profile, and functionally deorphanized the pyrokinin peptide receptor in the medically important tick, I. scapularis. Phylogenetic analysis supports that the cloned receptor is indeed a bona fide member of the pyrokinin-related peptide receptor family. The tick pyrokinin receptor transcript expression is most abundant in the central nervous system (i.e. synganglion), but is also detected in trachea, female reproductive tissues, and in a pooled sample comprised of Malpighian (renal) tubules and the hindgut. Finally, functional characterization of the identified receptor confirmed it as a pyrokinin peptide receptor as it was activated equally by four endogenous pyrokinin-related peptides. The receptor was slightly promiscuous as it was also activated by a peptide sharing some structural similarity, namely the CAPA-periviserokinin (CAPA-PVK) peptide. Nonetheless, the I. scapularis pyrokinin receptor required a CAPA-PVK peptide concentration of well over three orders of magnitude to achieve a comparable receptor activation response, which indicates it is quite selective for its native pyrokinin peptide ligands. This study sets the stage for future research to examine the prospective tissue targets identified in order to resolve the physiological roles of this family of peptides in Ixodid ticks.


Asunto(s)
Proteínas de Artrópodos/metabolismo , Vectores Artrópodos/metabolismo , Ixodes/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Neuropéptido/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas de Artrópodos/química , Secuencia de Bases , Células CHO , Secuencia Conservada , Cricetinae , Cricetulus , Evolución Molecular , Femenino , Masculino , Neuropéptidos/fisiología , Filogenia , Receptores Acoplados a Proteínas G/química , Receptores de Neuropéptido/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...