Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38853998

RESUMEN

Deep learning approaches have made significant advances in predicting cell type-specific chromatin patterns from the identity and arrangement of transcription factor (TF) binding motifs. However, most models have been applied in unperturbed contexts, precluding a predictive understanding of how chromatin state responds to TF perturbation. Here, we used transfer learning to train and interpret deep learning models that use DNA sequence to predict, with accuracy approaching experimental reproducibility, how the concentration of two dosage-sensitive TFs (TWIST1, SOX9) affects regulatory element (RE) chromatin accessibility in facial progenitor cells. High-affinity motifs that allow for heterotypic TF co-binding and are concentrated at the center of REs buffer against quantitative changes in TF dosage and strongly predict unperturbed accessibility. In contrast, motifs with low-affinity or homotypic binding distributed throughout REs lead to sensitive responses with minimal contributions to unperturbed accessibility. Both buffering and sensitizing features show signatures of purifying selection. We validated these predictive sequence features using reporter assays and showed that a biophysical model of TF-nucleosome competition can explain the sensitizing effect of low-affinity motifs. Our approach of combining transfer learning and quantitative measurements of the chromatin response to TF dosage therefore represents a powerful method to reveal additional layers of the cis-regulatory code.

2.
Sci Adv ; 10(21): eadj4452, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38781344

RESUMEN

Most genetic variants associated with psychiatric disorders are located in noncoding regions of the genome. To investigate their functional implications, we integrate epigenetic data from the PsychENCODE Consortium and other published sources to construct a comprehensive atlas of candidate brain cis-regulatory elements. Using deep learning, we model these elements' sequence syntax and predict how binding sites for lineage-specific transcription factors contribute to cell type-specific gene regulation in various types of glia and neurons. The elements' evolutionary history suggests that new regulatory information in the brain emerges primarily via smaller sequence mutations within conserved mammalian elements rather than entirely new human- or primate-specific sequences. However, primate-specific candidate elements, particularly those active during fetal brain development and in excitatory neurons and astrocytes, are implicated in the heritability of brain-related human traits. Additionally, we introduce PsychSCREEN, a web-based platform offering interactive visualization of PsychENCODE-generated genetic and epigenetic data from diverse brain cell types in individuals with psychiatric disorders and healthy controls.


Asunto(s)
Encéfalo , Epigénesis Genética , Secuencias Reguladoras de Ácidos Nucleicos , Humanos , Encéfalo/metabolismo , Secuencias Reguladoras de Ácidos Nucleicos/genética , Animales , Evolución Molecular , Trastornos Mentales/genética , Elementos Reguladores de la Transcripción/genética , Neuronas/metabolismo , Regulación de la Expresión Génica , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
3.
bioRxiv ; 2023 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-37873116

RESUMEN

Ectopic expression of OCT4, SOX2, KLF4 and MYC (OSKM) transforms differentiated cells into induced pluripotent stem cells. To refine our mechanistic understanding of reprogramming, especially during the early stages, we profiled chromatin accessibility and gene expression at single-cell resolution across a densely sampled time course of human fibroblast reprogramming. Using neural networks that map DNA sequence to ATAC-seq profiles at base-resolution, we annotated cell-state-specific predictive transcription factor (TF) motif syntax in regulatory elements, inferred affinity- and concentration-dependent dynamics of Tn5-bias corrected TF footprints, linked peaks to putative target genes, and elucidated rewiring of TF-to-gene cis-regulatory networks. Our models reveal that early in reprogramming, OSK, at supraphysiological concentrations, rapidly open transient regulatory elements by occupying non-canonical low-affinity binding sites. As OSK concentration falls, the accessibility of these transient elements decays as a function of motif affinity. We find that these OSK-dependent transient elements sequester the somatic TF AP-1. This redistribution is strongly associated with the silencing of fibroblast-specific genes within individual nuclei. Together, our integrated single-cell resource and models reveal insights into the cis-regulatory code of reprogramming at unprecedented resolution, connect TF stoichiometry and motif syntax to diversification of cell fate trajectories, and provide new perspectives on the dynamics and role of transient regulatory elements in somatic silencing.

4.
Dev Cell ; 58(19): 1898-1916.e9, 2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-37557175

RESUMEN

Chromatin accessibility is integral to the process by which transcription factors (TFs) read out cis-regulatory DNA sequences, but it is difficult to differentiate between TFs that drive accessibility and those that do not. Deep learning models that learn complex sequence rules provide an unprecedented opportunity to dissect this problem. Using zygotic genome activation in Drosophila as a model, we analyzed high-resolution TF binding and chromatin accessibility data with interpretable deep learning and performed genetic validation experiments. We identify a hierarchical relationship between the pioneer TF Zelda and the TFs involved in axis patterning. Zelda consistently pioneers chromatin accessibility proportional to motif affinity, whereas patterning TFs augment chromatin accessibility in sequence contexts where they mediate enhancer activation. We conclude that chromatin accessibility occurs in two tiers: one through pioneering, which makes enhancers accessible but not necessarily active, and the second when the correct combination of TFs leads to enhancer activation.

5.
bioRxiv ; 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-38187584

RESUMEN

Regulatory DNA sequences within enhancers and promoters bind transcription factors to encode cell type-specific patterns of gene expression. However, the regulatory effects and programmability of such DNA sequences remain difficult to map or predict because we have lacked scalable methods to precisely edit regulatory DNA and quantify the effects in an endogenous genomic context. Here we present an approach to measure the quantitative effects of hundreds of designed DNA sequence variants on gene expression, by combining pooled CRISPR prime editing with RNA fluorescence in situ hybridization and cell sorting (Variant-FlowFISH). We apply this method to mutagenize and rewrite regulatory DNA sequences in an enhancer and the promoter of PPIF in two immune cell lines. Of 672 variant-cell type pairs, we identify 497 that affect PPIF expression. These variants appear to act through a variety of mechanisms including disruption or optimization of existing transcription factor binding sites, as well as creation of de novo sites. Disrupting a single endogenous transcription factor binding site often led to large changes in expression (up to -40% in the enhancer, and -50% in the promoter). The same variant often had different effects across cell types and states, demonstrating a highly tunable regulatory landscape. We use these data to benchmark performance of sequence-based predictive models of gene regulation, and find that certain types of variants are not accurately predicted by existing models. Finally, we computationally design 185 small sequence variants (≤10 bp) and optimize them for specific effects on expression in silico. 84% of these rationally designed edits showed the intended direction of effect, and some had dramatic effects on expression (-100% to +202%). Variant-FlowFISH thus provides a powerful tool to map the effects of variants and transcription factor binding sites on gene expression, test and improve computational models of gene regulation, and reprogram regulatory DNA.

7.
Cell Genom ; 2(8)2022 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-36277849

RESUMEN

Genome-wide association studies (GWASs) of eye disorders have identified hundreds of genetic variants associated with ocular disease. However, the vast majority of these variants are noncoding, making it challenging to interpret their function. Here we present a joint single-cell atlas of gene expression and chromatin accessibility of the adult human retina with more than 50,000 cells, which we used to analyze single-nucleotide polymorphisms (SNPs) implicated by GWASs of age-related macular degeneration, glaucoma, diabetic retinopathy, myopia, and type 2 macular telangiectasia. We integrate this atlas with a HiChIP enhancer connectome, expression quantitative trait loci (eQTL) data, and base-resolution deep learning models to predict noncoding SNPs with causal roles in eye disease, assess SNP impact on transcription factor binding, and define their known and novel target genes. Our efforts nominate pathogenic SNP-target gene interactions for multiple vision disorders and provide a potentially powerful resource for interpreting noncoding variation in the eye.

8.
J Med Syst ; 45(10): 90, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34468879

RESUMEN

Patient experience surveys (PES) are collected by healthcare systems as a surrogate marker of quality and published unedited online for the purpose of transparency, but these surveys may reflect gender biases directed toward healthcare providers. This retrospective study evaluated PES at a single university hospital between July 2016 and June 2018. Surveys were stratified by overall provider rating and self-identified provider gender. Adjectives from free-text survey comments were extracted using natural language processing techniques and applied to a statistical machine learning model to identify descriptors predictive of provider gender. 109,994 surveys were collected, 17,395 contained free-text comments describing 687 unique providers. The mean overall rating between male (8.84, n = 8558) and female (8.80, n = 8837) providers did not differ (p = 0.149). However, highly-rated male providers were more often described for their agentic qualities using adjectives such as "informative," "forthright," "superior," and "utmost" (OR 1.48, p < 0.01)-whereas highly-rated female providers were more often described by their communal qualities through adjectives such as "empathetic," "sweet," "warm," "attentive," and "approachable" (OR 2.11, p < 0.0001). PES may contain gender stereotypes, raising questions about their impact on physicians and their validity as a quality metric which must be balanced with the need for unedited transparency. Future prospective studies are needed to further characterize this trend across geographically and racially diverse healthcare providers.


Asunto(s)
Atención a la Salud , Personal de Salud , Femenino , Humanos , Masculino , Evaluación del Resultado de la Atención al Paciente , Satisfacción del Paciente , Estudios Retrospectivos , Encuestas y Cuestionarios
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...