Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38726482

RESUMEN

In patients of Asian ancestry, a heterozygous CGG repeat expansion of >100 units in LRP12 is the cause of oculopharyngodistal myopathy type 1 (OPDM1). Repeat lengths of between 61 and 100 units have been associated with rare amyotrophic lateral sclerosis (ALS) cases of Asian ancestry, although with unusually long disease duration and without significant upper motor neuron involvement. This study sought to determine whether LRP12 CGG repeat expansions were also present in ALS patients of European ancestry. Whole-genome sequencing data from 608 sporadic ALS patients, 35 familial ALS probands, and 4703 neurologically normal controls were screened for LRP12 CGG expansions using ExpansionHunter v4. All individuals had LRP12 CGG repeat lengths within the normal range of 3-25 units. To date, LRP12 CGG repeat expansions have not been reported in ALS patients of European ancestry and may be limited to rare ALS patients of Asian ancestry and atypical clinical presentations.

3.
Front Neurol ; 14: 1173779, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37426441

RESUMEN

Multiple sclerosis and the major sporadic neurogenerative disorders, amyotrophic lateral sclerosis, Parkinson disease, and Alzheimer disease are considered to have both genetic and environmental components. Advances have been made in finding genetic predispositions to these disorders, but it has been difficult to pin down environmental agents that trigger them. Environmental toxic metals have been implicated in neurological disorders, since human exposure to toxic metals is common from anthropogenic and natural sources, and toxic metals have damaging properties that are suspected to underlie many of these disorders. Questions remain, however, as to how toxic metals enter the nervous system, if one or combinations of metals are sufficient to precipitate disease, and how toxic metal exposure results in different patterns of neuronal and white matter loss. The hypothesis presented here is that damage to selective locus ceruleus neurons from toxic metals causes dysfunction of the blood-brain barrier. This allows circulating toxicants to enter astrocytes, from where they are transferred to, and damage, oligodendrocytes, and neurons. The type of neurological disorder that arises depends on (i) which locus ceruleus neurons are damaged, (ii) genetic variants that give rise to susceptibility to toxic metal uptake, cytotoxicity, or clearance, (iii) the age, frequency, and duration of toxicant exposure, and (iv) the uptake of various mixtures of toxic metals. Evidence supporting this hypothesis is presented, concentrating on studies that have examined the distribution of toxic metals in the human nervous system. Clinicopathological features shared between neurological disorders are listed that can be linked to toxic metals. Details are provided on how the hypothesis applies to multiple sclerosis and the major neurodegenerative disorders. Further avenues to explore the toxic metal hypothesis for neurological disorders are suggested. In conclusion, environmental toxic metals may play a part in several common neurological disorders. While further evidence to support this hypothesis is needed, to protect the nervous system it would be prudent to take steps to reduce environmental toxic metal pollution from industrial, mining, and manufacturing sources, and from the burning of fossil fuels.

4.
Eur Heart J Case Rep ; 7(4): ytad132, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37123645

RESUMEN

Background: Mitochondrial diseases represent an important potential cause of cardiomyopathy and should be considered in patients presenting with multisystem manifestations. Timely diagnosis of a mitochondrial disorder is needed as it can have reproductive implications for the offspring of the proband. Case Summary: We describe a case of undifferentiated rising and persistent troponin elevation in a 70-year-old female with only mild heart failure symptoms and signs. An eventual diagnosis of a mitochondrial cytopathy was made after genetic testing, striated muscle, and endomyocardial biopsy. Multidisciplinary involvement was vital in securing the ultimate diagnosis and is a key lesson from this case. On follow up, with institution of heart failure therapy including cardiac resynchronisation device therapy there was improvement in exercise tolerance and symptoms. Discussion: For discussion is the investigation of undifferentiated cardiomyopathies and consideration of mitochondrial disorders as an important diagnosis to exclude prior to diagnosis as an idiopathic cardiomyopathy.

5.
Sci Adv ; 9(18): eade2044, 2023 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-37146135

RESUMEN

Pathogenic short tandem repeat (STR) expansions cause over 20 neurodegenerative diseases. To determine the contribution of STRs in sporadic amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), we used ExpansionHunter, REviewer, and polymerase chain reaction validation to assess 21 neurodegenerative disease-associated STRs in whole-genome sequencing data from 608 patients with sporadic ALS, 68 patients with sporadic FTD, and 4703 matched controls. We also propose a data-derived outlier detection method for defining allele thresholds in rare STRs. Excluding C9orf72 repeat expansions, 17.6% of clinically diagnosed ALS and FTD cases had at least one expanded STR allele reported to be pathogenic or intermediate for another neurodegenerative disease. We identified and validated 162 disease-relevant STR expansions in C9orf72 (ALS/FTD), ATXN1 [spinal cerebellar ataxia type 1 (SCA1)], ATXN2 (SCA2), ATXN8 (SCA8), TBP (SCA17), HTT (Huntington's disease), DMPK [myotonic dystrophy type 1 (DM1)], CNBP (DM2), and FMR1 (fragile-X disorders). Our findings suggest clinical and pathological pleiotropy of neurodegenerative disease genes and highlight their importance in ALS and FTD.


Asunto(s)
Esclerosis Amiotrófica Lateral , Demencia Frontotemporal , Ataxias Espinocerebelosas , Humanos , Demencia Frontotemporal/genética , Esclerosis Amiotrófica Lateral/genética , Proteína C9orf72/genética , Expansión de las Repeticiones de ADN/genética , Ataxias Espinocerebelosas/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética
6.
Sci Rep ; 13(1): 655, 2023 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-36635465

RESUMEN

Potentially toxic elements such as lead and aluminium have been proposed to play a role in the pathogenesis of multiple sclerosis (MS), since their neurotoxic mechanisms mimic many of the pathogenetic processes in MS. We therefore examined the distribution of several potentially toxic elements in the autopsied brains of people with and without MS, using two methods of elemental bio-imaging. Toxicants detected in the locus ceruleus were used as indicators of past exposures. Autometallography of paraffin sections from multiple brain regions of 21 MS patients and 109 controls detected inorganic mercury, silver, or bismuth in many locus ceruleus neurons of both groups, and in widespread blood vessels, oligodendrocytes, astrocytes, and neurons of four MS patients and one control. Laser ablation-inductively coupled plasma-mass spectrometry imaging of pons paraffin sections from all MS patients and 12 controls showed that combinations of iron, silver, lead, aluminium, mercury, nickel, and bismuth were present more often in the locus ceruleus of MS patients and were located predominantly in white matter tracts. Based on these results, we propose that metal toxicants in locus ceruleus neurons weaken the blood-brain barrier, enabling multiple interacting toxicants to pass through blood vessels and enter astrocytes and oligodendroglia, leading to demyelination.


Asunto(s)
Mercurio , Esclerosis Múltiple , Humanos , Bismuto , Plata , Aluminio , Parafina , Encéfalo , Sustancias Peligrosas
7.
Sci Rep ; 12(1): 10582, 2022 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-35732753

RESUMEN

Individuals encounter varying environmental exposures throughout their lifetimes. Some exposures such as smoking are readily observed and have high personal recall; others are more indirect or sporadic and might only be inferred from long occupational histories or lifestyles. We evaluated the utility of using lifetime-long self-reported exposures for identifying differential methylation in an amyotrophic lateral sclerosis cases-control cohort of 855 individuals. Individuals submitted paper-based surveys on exposure and occupational histories as well as whole blood samples. Genome-wide DNA methylation levels were quantified using the Illumina Infinium Human Methylation450 array. We analyzed 15 environmental exposures using the OSCA software linear and MOA models, where we regressed exposures individually by methylation adjusted for batch effects and disease status as well as predicted scores for age, sex, cell count, and smoking status. We also regressed on the first principal components on clustered environmental exposures to detect DNA methylation changes associated with a more generalised definition of environmental exposure. Five DNA methylation probes across three environmental exposures (cadmium, mercury and metalwork) were significantly associated using the MOA models and seven through the linear models, with one additionally across a principal component representing chemical exposures. Methylome-wide significance for four of these markers was driven by extreme hyper/hypo-methylation in small numbers of individuals. The results indicate the potential for using self-reported exposure histories in detecting DNA methylation changes in response to the environment, but also highlight the confounded nature of environmental exposure in cohort studies.


Asunto(s)
Metilación de ADN , Metales Pesados , Exposición a Riesgos Ambientales/efectos adversos , Humanos , Autoinforme , Fumar
8.
Neurobiol Aging ; 116: 92-95, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35613520

RESUMEN

Sporadic amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with a complex genetic architecture. The lengths of two short tandem repeats (STRs), at the NEK1 and STMN2 loci, were recently associated with ALS risk in cohorts of European descent. The STMN2 STR was proposed to be predictive of clinical features including the age of onset and disease duration in bulbar onset cases. We sought to investigate NEK1 and STMN2 STR lengths in a cohort of Australian sporadic ALS cases (n = 608) and neurologically healthy controls (n = 4689) of European ancestry. ExpansionHunter was used to determine NEK1 and STMN2 STR length genotypes from whole-genome sequencing data followed by PCR validation of predicted lengths. No significant association was identified between sporadic ALS risk and the length of either STR. Further, neither NEK1 nor STMN2 STR lengths were indicative of the age of onset or disease duration. We report that the NEK1 and STMN2 STRs were not associated with ALS risk or clinical features in this Australian sporadic ALS cohort.


Asunto(s)
Esclerosis Amiotrófica Lateral , Quinasa 1 Relacionada con NIMA , Enfermedades Neurodegenerativas , Estatmina , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Australia , Humanos , Repeticiones de Microsatélite , Quinasa 1 Relacionada con NIMA/genética , Quinasa 1 Relacionada con NIMA/metabolismo , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/metabolismo , Estatmina/genética , Estatmina/metabolismo
9.
Sci Transl Med ; 14(633): eabj0264, 2022 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-35196023

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with an estimated heritability between 40 and 50%. DNA methylation patterns can serve as proxies of (past) exposures and disease progression, as well as providing a potential mechanism that mediates genetic or environmental risk. Here, we present a blood-based epigenome-wide association study meta-analysis in 9706 samples passing stringent quality control (6763 patients, 2943 controls). We identified a total of 45 differentially methylated positions (DMPs) annotated to 42 genes, which are enriched for pathways and traits related to metabolism, cholesterol biosynthesis, and immunity. We then tested 39 DNA methylation-based proxies of putative ALS risk factors and found that high-density lipoprotein cholesterol, body mass index, white blood cell proportions, and alcohol intake were independently associated with ALS. Integration of these results with our latest genome-wide association study showed that cholesterol biosynthesis was potentially causally related to ALS. Last, DNA methylation at several DMPs and blood cell proportion estimates derived from DNA methylation data were associated with survival rate in patients, suggesting that they might represent indicators of underlying disease processes potentially amenable to therapeutic interventions.


Asunto(s)
Esclerosis Amiotrófica Lateral , Enfermedades Neurodegenerativas , Esclerosis Amiotrófica Lateral/genética , Colesterol , Metilación de ADN/genética , Epigénesis Genética , Estudio de Asociación del Genoma Completo , Humanos , Enfermedades Neurodegenerativas/genética
10.
PLoS One ; 17(1): e0262464, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35015796

RESUMEN

OBJECTIVE: Environmental toxicants are suspected to play a part in the pathogenesis of idiopathic Parkinson's disease (PD) and may underlie its increasing incidence. Mercury exposure in humans is common and is increasing due to accelerating levels of atmospheric mercury, and mercury damages cells via oxidative stress, cell membrane damage, and autoimmunity, mechanisms suspected in the pathogenesis of PD. We therefore compared the cellular distribution of mercury in the tissues of people with and without PD who had evidence of previous mercury exposure by mercury being present in their locus ceruleus neurons. MATERIALS AND METHODS: Paraffin sections from the brain and general organs of two people with PD, two people without PD with a history of mercury exposure, and ten people without PD or known mercury exposure, were stained for inorganic mercury using autometallography, combined with immunostaining for a-synuclein and glial cells. All had mercury-containing neurons in locus ceruleus neurons. Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) was used to confirm the presence of mercury and to look for other potentially toxic elements. Autometallography-stained locus ceruleus paraffin sections were examined to compare the frequency of previous mercury exposure between 20 PD and 40 non-PD individuals. RESULTS: In PD brains, autometallography-detected mercury was seen in neurons affected by the disease, such as those in the substantia nigra, motor cortex, striatum, thalamus, and cerebellum. Mercury was seen in oligodendrocytes in white and grey matter. Mercury often co-localised with Lewy bodies and neurites. A more restricted distribution of brain mercury was seen in people without PD (both with or without known mercury exposure), with no mercury present in the substantia nigra, striatum, or thalamus. The presence of autometallography-detected mercury in PD was confirmed with LA-ICP-MS, which demonstrated other potentially toxic metals in the locus ceruleus and high iron levels in white matter. Autometallography-detected mercury was found in locus ceruleus neurons in a similar proportion of PD (65%) and non-PD (63%) individuals. CONCLUSIONS: In people with PD, mercury was found in neurons and oligodendrocytes in regions of the brain that are affected by the disease, and often co-localised with aggregated a-synuclein. Mercury in the motor cortex, thalamus and striatum could result in bradykinesia and rigidity, and mercury in the cerebellum could cause tremor. People without PD had a restricted uptake of mercury into the brain. The similar frequency of mercury in the locus ceruleus of people with and without PD suggests these two groups have had comparable previous mercury exposures but that PD brains have a greater predisposition to take up circulating mercury. While this post mortem study does not provide a direct link between mercury and idiopathic PD, it adds to the body of evidence that metal toxicants such as mercury play a role in the disease. A precautionary approach would be to reduce rising mercury levels in the atmosphere by limiting the burning of fossil fuels, which may be contributing to the increasing incidence of PD.


Asunto(s)
Encéfalo/patología , Cuerpos de Lewy/patología , Locus Coeruleus/patología , Mercurio/metabolismo , Neuronas/patología , Oligodendroglía/patología , Enfermedad de Parkinson/patología , Anciano , Anciano de 80 o más Años , Encéfalo/metabolismo , Estudios de Casos y Controles , Femenino , Humanos , Cuerpos de Lewy/metabolismo , Locus Coeruleus/metabolismo , Masculino , Mercurio/análisis , Persona de Mediana Edad , Neuronas/metabolismo , Oligodendroglía/metabolismo , Enfermedad de Parkinson/metabolismo , Pronóstico , Estudios Retrospectivos
11.
Eur J Hum Genet ; 30(5): 532-539, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-33907316

RESUMEN

Amyotrophic Lateral Sclerosis (ALS) is recognised to be a complex neurodegenerative disease involving both genetic and non-genetic risk factors. The underlying causes and risk factors for the majority of cases remain unknown; however, ever-larger genetic data studies and methodologies promise an enhanced understanding. Recent analyses using published summary statistics from the largest ALS genome-wide association study (GWAS) (20,806 ALS cases and 59,804 healthy controls) identified that schizophrenia (SCZ), cognitive performance (CP) and educational attainment (EA) related traits were genetically correlated with ALS. To provide additional evidence for these correlations, we built single and multi-trait genetic predictors using GWAS summary statistics for ALS and these traits, (SCZ, CP, EA) in an independent Australian cohort (846 ALS cases and 665 healthy controls). We compared methods for generating the risk predictors and found that the combination of traits improved the prediction (Nagelkerke-R2) of the case-control logistic regression. The combination of ALS, SCZ, CP, and EA, using the SBayesR predictor method gave the highest prediction (Nagelkerke-R2) of 0.027 (P value = 4.6 × 10-8), with the odds-ratio for estimated disease risk between the highest and lowest deciles of individuals being 3.15 (95% CI 1.96-5.05). These results support the genetic correlation between ALS, SCZ, CP and EA providing a better understanding of the complexity of ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral , Enfermedades Neurodegenerativas , Esquizofrenia , Esclerosis Amiotrófica Lateral/genética , Australia , Cognición , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo/métodos , Humanos , Polimorfismo de Nucleótido Simple , Factores de Riesgo , Esquizofrenia/genética
12.
Acta Neuropathol ; 143(2): 179-224, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34853891

RESUMEN

In neurological diseases, the actions of microglia, the resident myeloid cells of the CNS parenchyma, may diverge from, or intersect with, those of recruited monocytes to drive immune-mediated pathology. However, defining the precise roles of each cell type has historically been impeded by the lack of discriminating markers and experimental systems capable of accurately identifying them. Our ability to distinguish microglia from monocytes in neuroinflammation has advanced with single-cell technologies, new markers and drugs that identify and deplete them, respectively. Nevertheless, the focus of individual studies on particular cell types, diseases or experimental approaches has limited our ability to connect phenotype and function more widely and across diverse CNS pathologies. Here, we critically review, tabulate and integrate the disease-specific functions and immune profiles of microglia and monocytes to provide a comprehensive atlas of myeloid responses in viral encephalitis, demyelination, neurodegeneration and ischemic injury. In emphasizing the differential roles of microglia and monocytes in the severe neuroinflammatory disease of viral encephalitis, we connect inflammatory pathways common to equally incapacitating diseases with less severe inflammation. We examine these findings in the context of human studies and highlight the benefits and inherent limitations of animal models that may impede or facilitate clinical translation. This enables us to highlight common and contrasting, non-redundant and often opposing roles of microglia and monocytes in disease that could be targeted therapeutically.


Asunto(s)
Microglía/inmunología , Monocitos/inmunología , Enfermedades Neuroinflamatorias/inmunología , Animales , Humanos , Fenotipo
13.
Sci Rep ; 11(1): 16714, 2021 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-34408264

RESUMEN

Successful aging is likely to involve both genetic and environmental factors, but environmental toxicants that accelerate aging are not known. Human exposure to mercury is common, and mercury has genotoxic, autoimmune, and free radical effects which could contribute to age-related disorders. The presence of inorganic mercury was therefore assessed in the organs of 170 people aged 1-104 years to determine the prevalence of mercury in human tissues at different ages. Mercury was found commonly in cells of the brain, kidney, thyroid, anterior pituitary, adrenal medulla and pancreas. The prevalence of mercury in these organs increased during aging but decreased in people aged over 80 years. People with mercury in one organ usually also had mercury in several others. In conclusion, the prevalence of inorganic mercury in human organs increases with age. The relative lack of tissue mercury in the very old could account for the flattened mortality rate and reduced incidence of cancer in this advanced age group. Since mercury may accelerate aging, efforts to reduce atmospheric mercury pollution could improve the chances of future successful aging.


Asunto(s)
Envejecimiento , Mercurio/farmacocinética , Adolescente , Adulto , Factores de Edad , Anciano , Anciano de 80 o más Años , Niño , Preescolar , Femenino , Humanos , Lactante , Masculino , Mercurio/toxicidad , Persona de Mediana Edad , Especificidad de Órganos
14.
Front Immunol ; 12: 701550, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34194442

RESUMEN

The essential amino acid tryptophan (TRP) is the initiating metabolite of the kynurenine pathway (KP), which can be upregulated by inflammatory conditions in cells. Neuroinflammation-triggered activation of the KP and excessive production of the KP metabolite quinolinic acid are common features of multiple neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). In addition to its role in the KP, genes involved in TRP metabolism, including its incorporation into proteins, and synthesis of the neurotransmitter serotonin, have also been genetically and functionally linked to these diseases. ALS is a late onset neurodegenerative disease that is classified as familial or sporadic, depending on the presence or absence of a family history of the disease. Heritability estimates support a genetic basis for all ALS, including the sporadic form of the disease. However, the genetic basis of sporadic ALS (SALS) is complex, with the presence of multiple gene variants acting to increase disease susceptibility and is further complicated by interaction with potential environmental factors. We aimed to determine the genetic contribution of 18 genes involved in TRP metabolism, including protein synthesis, serotonin synthesis and the KP, by interrogating whole-genome sequencing data from 614 Australian sporadic ALS cases. Five genes in the KP (AFMID, CCBL1, GOT2, KYNU, HAAO) were found to have either novel protein-altering variants, and/or a burden of rare protein-altering variants in SALS cases compared to controls. Four genes involved in TRP metabolism for protein synthesis (WARS) and serotonin synthesis (TPH1, TPH2, MAOA) were also found to carry novel variants and/or gene burden. These variants may represent ALS risk factors that act to alter the KP and lead to neuroinflammation. These findings provide further evidence for the role of TRP metabolism, the KP and neuroinflammation in ALS disease pathobiology.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Predisposición Genética a la Enfermedad/genética , Triptófano/metabolismo , Humanos , Secuenciación Completa del Genoma
15.
Toxics ; 9(3)2021 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-33801008

RESUMEN

The kidney plays a dominant role in the pathogenesis of essential hypertension, but the initial pathogenic events in the kidney leading to hypertension are not known. Exposure to mercury has been linked to many diseases including hypertension in epidemiological and experimental studies, so we studied the distribution and prevalence of mercury in the human kidney. Paraffin sections of kidneys were available from 129 people ranging in age from 1 to 104 years who had forensic/coronial autopsies. One individual had injected himself with metallic mercury, the other 128 were from varied clinicopathological backgrounds without known exposure to mercury. Sections were stained for inorganic mercury using autometallography. Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) was used on six samples to confirm the presence of autometallography-detected mercury and to look for other toxic metals. In the 128 people without known mercury exposure, mercury was found in: (1) proximal tubules of the cortex and Henle thin loops of the medulla, in 25% of kidneys (and also in the man who injected himself with mercury), (2) proximal tubules only in 16% of kidneys, and (3) Henle thin loops only in 23% of kidneys. The age-related proportion of people who had any mercury in their kidney was 0% at 1-20 years, 66% at 21-40 years, 77% at 41-60 years, 84% at 61-80 years, and 64% at 81-104 years. LA-ICP-MS confirmed the presence of mercury in samples staining with autometallography and showed cadmium, lead, iron, nickel, and silver in some kidneys. In conclusion, mercury is found commonly in the adult human kidney, where it appears to accumulate in proximal tubules and Henle thin loops until an advanced age. Dysfunctions of both these cortical and medullary regions have been implicated in the pathogenesis of essential hypertension, so these findings suggest that further studies of the effects of mercury on blood pressure are warranted.

16.
Genome Biol ; 22(1): 90, 2021 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-33771206

RESUMEN

BACKGROUND: People with neurodegenerative disorders show diverse clinical syndromes, genetic heterogeneity, and distinct brain pathological changes, but studies report overlap between these features. DNA methylation (DNAm) provides a way to explore this overlap and heterogeneity as it is determined by the combined effects of genetic variation and the environment. In this study, we aim to identify shared blood DNAm differences between controls and people with Alzheimer's disease, amyotrophic lateral sclerosis, and Parkinson's disease. RESULTS: We use a mixed-linear model method (MOMENT) that accounts for the effect of (un)known confounders, to test for the association of each DNAm site with each disorder. While only three probes are found to be genome-wide significant in each MOMENT association analysis of amyotrophic lateral sclerosis and Parkinson's disease (and none with Alzheimer's disease), a fixed-effects meta-analysis of the three disorders results in 12 genome-wide significant differentially methylated positions. Predicted immune cell-type proportions are disrupted across all neurodegenerative disorders. Protein inflammatory markers are correlated with profile sum-scores derived from disease-associated immune cell-type proportions in a healthy aging cohort. In contrast, they are not correlated with MOMENT DNAm-derived profile sum-scores, calculated using effect sizes of the 12 differentially methylated positions as weights. CONCLUSIONS: We identify shared differentially methylated positions in whole blood between neurodegenerative disorders that point to shared pathogenic mechanisms. These shared differentially methylated positions may reflect causes or consequences of disease, but they are unlikely to reflect cell-type proportion differences.


Asunto(s)
Metilación de ADN , Epigénesis Genética , Estudio de Asociación del Genoma Completo , Enfermedades Neurodegenerativas/etiología , Alelos , Biomarcadores , Células Sanguíneas/metabolismo , Estudios de Casos y Controles , Susceptibilidad a Enfermedades , Perfilación de la Expresión Génica , Sitios Genéticos , Predisposición Genética a la Enfermedad , Humanos , Enfermedades Neurodegenerativas/metabolismo
17.
Sci Rep ; 11(1): 2961, 2021 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-33536525

RESUMEN

Plasma noradrenaline levels increase with aging, and this could contribute to the sympathetic overactivity that is associated with essential hypertension and the metabolic syndrome. The underlying cause of this rise in noradrenaline is unknown, but a clue may be that mercury increases noradrenaline output from the adrenal medulla of experimental animals. We therefore determined the proportion of people from 2 to 104 years of age who had mercury in their adrenal medulla. Mercury was detected in paraffin sections of autopsied adrenal glands using two methods of elemental bioimaging, autometallography and laser ablation-inductively coupled plasma-mass spectrometry. Mercury first appeared in cells of the adrenal medulla in the 21-40 years group, where it was present in 52% of samples, and increased progressively in frequency in older age groups, until it was detected in 90% of samples from people aged over 80 years. In conclusion, the proportion of people having mercury in their adrenal medulla increases with aging. Mercury could alter the metabolism of catecholamines in the adrenal medulla that leads to the raised levels of plasma noradrenaline in aging. This retrospective autopsy study was not able to provide a definitive link between adrenal mercury, noradrenaline levels and hypertension, but future functional human and experimental studies could provide further evidence for these associations.


Asunto(s)
Médula Suprarrenal/química , Envejecimiento/sangre , Hipertensión/metabolismo , Mercurio/análisis , Norepinefrina/sangre , Adolescente , Médula Suprarrenal/metabolismo , Médula Suprarrenal/patología , Adulto , Anciano , Anciano de 80 o más Años , Envejecimiento/metabolismo , Niño , Preescolar , Femenino , Humanos , Hipertensión/sangre , Persona de Mediana Edad , Norepinefrina/metabolismo , Estudios Retrospectivos , Adulto Joven
18.
PLoS One ; 16(2): e0246748, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33561145

RESUMEN

OBJECTIVE: Mercury and other toxic metals have been suggested to be involved in thyroid disorders, but the distribution and prevalence of mercury in the human thyroid gland is not known. We therefore used two elemental bio-imaging techniques to look at the distribution of mercury and other toxic metals in the thyroid glands of people over a wide range of ages. MATERIALS AND METHODS: Formalin-fixed paraffin-embedded thyroid tissue blocks were obtained from 115 people aged 1-104 years old, with varied clinicopathological conditions, who had thyroid samples removed during forensic/coronial autopsies. Seven-micron sections from these tissue blocks were used to detect intracellular inorganic mercury using autometallography. The presence of mercury was confirmed using laser ablation-inductively coupled plasma-mass spectrometry which can detect multiple elements. RESULTS: Mercury was found on autometallography in the thyroid follicular cells of 4% of people aged 1-29 years, 9% aged 30-59 years, and 38% aged 60-104 years. Laser ablation-inductively coupled plasma-mass spectrometry confirmed the presence of mercury in samples staining with autometallography, and detected cadmium, lead, iron, nickel and silver in selected samples. CONCLUSIONS: The proportion of people with mercury in their thyroid follicular cells increases with age, until it is present in over one-third of people aged 60 years and over. Other toxic metals in thyroid cells could enhance mercury toxicity. Mercury can trigger genotoxicity, autoimmune reactions, and oxidative damage, which raises the possibility that mercury could play a role in the pathogenesis of thyroid cancers, autoimmune thyroiditis, and hypothyroidism.


Asunto(s)
Monitoreo del Ambiente , Hipotiroidismo/metabolismo , Mercurio/metabolismo , Glándula Tiroides/metabolismo , Neoplasias de la Tiroides/metabolismo , Tiroiditis Autoinmune/metabolismo , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Niño , Preescolar , Femenino , Humanos , Lactante , Masculino , Persona de Mediana Edad , Adulto Joven
19.
Neurobiol Aging ; 101: 297.e9-297.e11, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33581934

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease caused by the progressive degeneration of motor neurons. Recently, genetic variants in GLT8D1 and ARPP21 were associated with ALS in a cohort of European descent. A synergistic relationship was proposed between ALS associated variants in GLT8D1 and ARPP21. We aimed to determine the prevalence of genetic variation in GLT8D1 and ARPP21 in an Australian cohort of familial (n = 81) and sporadic ALS (n = 618) cases using whole-exome and whole-genome sequencing data. No novel mutations were identified in either gene, nor was there significant enrichment of protein-altering sequence variation among ALS cases. GLT8D1 and ARPP21 mutations are not a common cause of ALS in Australian familial and sporadic cohorts.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Variación Genética/genética , Estudio de Asociación del Genoma Completo/métodos , Glicosiltransferasas/genética , Resultados Negativos , Fosfoproteínas/genética , Australia , Estudios de Cohortes , Femenino , Humanos , Masculino , Población Blanca/genética , Secuenciación del Exoma , Secuenciación Completa del Genoma
20.
Artículo en Inglés | MEDLINE | ID: mdl-33276658

RESUMEN

Toxic metals have been implicated in the pathogenesis of pancreatic cancer. Human exposure to mercury is widespread, but it is not known how often mercury is present in the human pancreas and which cells might contain mercury. We therefore aimed to determine, in people with and without pancreatic cancer, the distribution and prevalence of mercury in pancreatic cells. Paraffin-embedded sections of normal pancreatic tissue were obtained from pancreatectomy samples of 45 people who had pancreatic adenocarcinoma, and from autopsy samples of 38 people without pancreatic cancer. Mercury was identified using two methods of elemental bio-imaging: (1) With autometallography, inorganic mercury was seen in islet cells in 14 of 30 males (47%) with pancreatic cancer compared to two of 17 males (12%) without pancreatic cancer (p = 0.024), and in 10 of 15 females (67%) with pancreatic cancer compared to four of 22 females (19%) without pancreatic cancer (p = 0.006). Autometallographic mercury was present in acinar cells in 24% and in periductal cells in 11% of people with pancreatic cancer, but not in those without pancreatic cancer. (2) Laser ablation-inductively coupled plasma-mass spectrometry confirmed the presence of mercury in islets that stained with autometallography and detected cadmium, lead, chromium, iron, nickel and aluminium in some samples. In conclusion, the genotoxic metal mercury is found in normal pancreatic cells in more people with, than without, pancreatic cancer. These findings support the hypothesis that toxic metals such as mercury contribute to the pathogenesis of pancreatic cancer.


Asunto(s)
Contaminantes Ambientales/metabolismo , Mercurio/metabolismo , Páncreas/metabolismo , Neoplasias Pancreáticas , Adenocarcinoma , Cadmio , Contaminantes Ambientales/toxicidad , Femenino , Humanos , Masculino , Mercurio/toxicidad , Metales Pesados , Estudios Retrospectivos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...