Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Biomed Mater Res B Appl Biomater ; 110(11): 2506-2520, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35735075

RESUMEN

The recalcitrant nature of biofilms makes biofilm-associated infections difficult to treat in modern medicine. Biofilms have a high vulnerability to antibiotics and a limited repertoire of antibiotics could act on matured biofilms. This issue has resulted in a gradual paradigm shift in drug discovery and therapy, with anti-biofilm compounds being sought alongside new drug carriers. A potential solution to biofilm-associated infections is to employ antibiofilm treatments, which can attack biofilms from many fronts. Nanocarriers are promising in this regard because they can be entrapped within biofilm matrix, target biofilm matrix, and provide local drug delivery to inhibit biofilm formation. In this study, curcumin as an herbal extract was loaded onto hyperbranched polyethylenimine-grafted mesoporous silica nanoparticles (F-MSN-PEI/Cur) and antibiofilm investigations were performed. The F-MSN-PEI/Cur design has the potential to repurpose curcumin as an antibiofilm agent by increasing its solubility and lowering the required doses for the destruction of matured biofilms as well as suppressing biofilm development. Using imaging and spectroscopic techniques, we assessed the interaction of F-MSN-PEI/Cur with Staphylococcus aureus bacterial cells and determined the impact of F-MSN-PEI/Cur on eradicating matured biofilms and suppressing biofilm development. The F-MSN-PEI/Cur design is highly cytocompatible, as observed by the cytotoxicity screening investigations on L929 mouse fibroblast cell line. Our findings show that F-MSN-PEI/Cur design reduces the bacterial cell viability, inhibits biofilm formation, and induces biofilm eradication, which is attributed to F-MSN-PEI/Cur design having the potential to repurpose the antibiofilm activity of curcumin-herbal extract.


Asunto(s)
Curcumina , Infecciones Estafilocócicas , Animales , Antibacterianos/farmacología , Biopelículas , Curcumina/química , Curcumina/farmacología , Portadores de Fármacos/química , Ratones , Pruebas de Sensibilidad Microbiana , Polietileneimina/farmacología , Dióxido de Silicio/química , Dióxido de Silicio/farmacología , Infecciones Estafilocócicas/tratamiento farmacológico , Staphylococcus aureus
2.
Biomater Adv ; 133: 112607, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35525761

RESUMEN

Due to its modular and flexible design options, mesoporous silica provides ample opportunities when developing new strategies for combinatory antibacterial treatments. In this study, antibacterial ceria (CeO2) nanoparticles (NP) were used as core material, and were further coated with a mesoporous silica shell (mSiO2) to obtain a core@shell structured nanocomposite (CeO2@mSiO2). The porous silica shell was utilized as drug reservoir, whereby CeO2@mSiO2 was loaded with the antimicrobial agent capsaicin (CeO2@mSiO2/Cap). CeO2@mSiO2/Cap was further surface-coated with the natural antimicrobial polymer chitosan by employing physical adsorption. The obtained nanocomposite, CeO2@mSiO2/Cap@Chit, denoted NAB, which stands for "nanoantibiotic", provided a combinatory antibacterial mode of action. The antibacterial effect of NAB on the Gram-negative bacteria Escherichia coli (E.coli) was proven to be significant in vitro. In addition, in vivo evaluations revealed NAB to inhibit the bacterial growth in the intestine of bacteria-fed Drosophila melanogaster larvae, and decreased the required dose of capsaicin needed to eliminate bacteria. As our constructed CeO2@mSiO2 did not show toxicity to mammalian cells, it holds promise for the development of next-generation nanoantibiotics of non-toxic nature with flexible design options.


Asunto(s)
Nanopartículas , Dióxido de Silicio , Animales , Antibacterianos/farmacología , Capsaicina , Drosophila melanogaster , Mamíferos , Nanopartículas/uso terapéutico , Dióxido de Silicio/farmacología
3.
Int J Nanomedicine ; 16: 6575-6591, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34602819

RESUMEN

Public awareness of infectious diseases has increased in recent months, not only due to the current COVID-19 outbreak but also because of antimicrobial resistance (AMR) being declared a top-10 global health threat by the World Health Organization (WHO) in 2019. These global issues have spiked the realization that new and more efficient methods and approaches are urgently required to efficiently combat and overcome the failures in the diagnosis and therapy of infectious disease. This holds true not only for current diseases, but we should also have enough readiness to fight the unforeseen diseases so as to avoid future pandemics. A paradigm shift is needed, not only in infection treatment, but also diagnostic practices, to overcome the potential failures associated with early diagnosis stages, leading to unnecessary and inefficient treatments, while simultaneously promoting AMR. With the development of nanotechnology, nanomaterials fabricated as multifunctional nano-platforms for antibacterial therapeutics, diagnostics, or both (known as "theranostics") have attracted increasing attention. In the research field of nanomedicine, mesoporous silica nanoparticles (MSN) with a tailored structure, large surface area, high loading capacity, abundant chemical versatility, and acceptable biocompatibility, have shown great potential to integrate the desired functions for diagnosis of bacterial infections. The focus of this review is to present the advances in mesoporous materials in the form of nanoparticles (NPs) or composites that can easily and flexibly accommodate dual or multifunctional capabilities of separation, identification and tracking performed during the diagnosis of infectious diseases together with the inspiring NP designs in diagnosis of bacterial infections.


Asunto(s)
Infecciones Bacterianas , COVID-19 , Nanopartículas , Infecciones Bacterianas/diagnóstico , Infecciones Bacterianas/tratamiento farmacológico , Humanos , Porosidad , SARS-CoV-2 , Dióxido de Silicio
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...