Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 200
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 932: 172878, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38697541

RESUMEN

Excessive phosphorus (P) in eutrophic water induces cyanobacterial blooms that aggravate the burden of in-situ remediation measures. In order to ensure better ecological recovery, Flock & Lock technique has been developed to simultaneously sink cyanobacteria and immobilize P but requires a combination of flocculent and P inactivation agent. Here we synthesized a novel lanthanum-modified pyroaurite (LMP), as an alternative for Flock & Lock of cyanobacteria and phosphorus at the background of rich humic acid and suspended solids. LMP shows a P adsorption capacity of 36.0 mg/g and nearly 100 % removal of chlorophyll-a (Chl-a), turbidity, UV254 and P at a dosage (0.3 g/L) much lower than the commercial analogue (0.5 g/L). The resultant sediment (98.2 % as immobile P) exhibits sound stability without observable release of P or re-growth of cyanobacteria over a 50-day incubation period. The use of LMP also constrains the release of toxic microcystins to 1.4 µg/L from the sunk cyanobacterial cells, outperforming the commonly used polyaluminum chloride (PAC). Similar Flock & Lock efficiency could also be achieved in real eutrophic water. The outstanding Flock & Lock performance of LMP is attributable to the designed La modification. During LMP treatment, La acts as not only a P binder by formation of LaPO4, but also a coagulant to create a synergistic effect with pyroaurite. The controlled hydrolysis of surface La(III) over pyroaurite aided the possible formation of La(III)-pyroaurite networking structure, which significantly enhanced the Flock & Lock process through adsorption, charge neutralization, sweep flocculation and entrapment. In the end, the preliminary economic analysis is performed. The results demonstrate that LMP is a versatile and cost-effective agent for in-situ remediation of eutrophic waters.

2.
Environ Sci Technol ; 58(15): 6835-6842, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38570313

RESUMEN

Artificial ion channel membranes hold high promise in water treatment, nanofluidics, and energy conversion, but it remains a great challenge to construct such smart membranes with both reversible ion-gating capability and desirable ion selectivity. Herein, we constructed a smart MXene-based membrane via p-phenylenediamine functionalization (MLM-PPD) with highly stable and aligned two-dimensional subnanochannels, which exhibits reversible ion-gating capability and ultrahigh metal ion selectivity similar to biological ion channels. The pH-sensitive groups within the MLM-PPD channel confers excellent reversible Mg2+-gating capability with a pH-switching ratio of up to 100. The mono/divalent metal-ion selectivity up to 1243.8 and 400.9 for K+/Mg2+ and Li+/Mg2+, respectively, outperforms other reported membranes. Theoretical calculations combined with experimental results reveal that the steric hindrance and stronger PPD-ion interactions substantially enhance the energy barrier for divalent metal ions passing through the MLM-PPD, and thus leading to ultrahigh mono/divalent metal-ion selectivity. This work provides a new strategy for developing artificial-ion channel membranes with both reversible ion-gating functionality and high-ion selectivity for various applications.


Asunto(s)
Canales Iónicos , Metales , Nitritos , Elementos de Transición , Iones , Cationes Bivalentes , Membranas Artificiales , Concentración de Iones de Hidrógeno
3.
Nat Commun ; 15(1): 2808, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38561360

RESUMEN

The ongoing pattern shift in water treatment from pollution control to energy recovery challenges the energy-intensive chemical oxidation processes that have been developed for over a century. Redirecting the pathways of carbon evolution from molecular fragmentation to polymerization is critical for energy harvesting during chemical oxidation, yet the regulation means remain to be exploited. Herein, by confining the widely-studied oxidation system-Mn3O4 catalytic activation of peroxymonosulfate-inside amorphous carbon nanotubes (ACNTs), we demonstrate that the pathways of contaminant conversion can be readily modulated by spatial nanoconfinement. Reducing the pore size of ACNTs from 120 to 20 nm monotonously improves the pathway selectivity toward oligomers, with the yield one order of magnitude higher under 20-nm nanoconfinement than in bulk. The interactions of Mn3O4 with ACNTs, reactant enrichment, and pH lowering under nanoconfinement are evidenced to collectively account for the enhanced selectivity toward polymerization. This work provides an adaptive paradigm for carbon redirection in a variety of catalytic oxidation processes toward energy harvesting and sustainable water purification.

4.
Water Res ; 255: 121484, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38518413

RESUMEN

Dynamic feedback of the removal performance of trace organic contaminants (TrOCs) is essential towards economical advanced oxidation processes (AOPs), whereas the corresponding quick-response feedback methods have long been desired. Herein, machine learning (ML) multi-target regression random forest (MORF) models were developed based on the fluorescence spectra to predict the removal of TrOCs during UV/H2O2 treatment of municipal secondary effluent as a typical AOP. The predictive performance of the developed MORF model (R2 = 0.83-0.95) exhibited higher accuracy over the traditional linear regression models with R2 increased by ∼0.15. Furthermore, through feature importance analysis, the spectral regions of high importance were identified for different groups of TrOCs, thus enabling faster data acquisition due to remarkably reduced size of required fluorescence spectral scanning region. Specifically, the fluorescence regions Ex(235-275 nm)/Em(325-400 nm) and Ex(240-360 nm)/Em(325-450 nm) were found highly correlated with the removal of the TrOCs susceptible to both photodegradation and •OH degradation and those primarily subject to •OH degradation, respectively. In addition, the spectral regions of high importance were also individually identified for the investigated TrOCs during the AOP. Through providing an efficient ML-based feedback method to monitor TrOC removal during AOP, this study sheds light on the development of dynamic feedback-based strategies for precise and economical advanced treatment of wastewater.

5.
J Hazard Mater ; 465: 133521, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38232554

RESUMEN

HO•/SO4•--based advanced oxidation processes for the decomplexation of heavy metal-organic complexes usually encounter poor efficiency in real scenarios. Herein, we reported an interesting self-catalyzed degradation of Cu(II)-EDTA with high selectivity in UV/peroxymonosulfate (PMS). Chemical probing experiments and competitive kinetic analysis quantitatively revealed the crucial role of in situ formed Cu(III). The Cu(III) species not only oxidized Cu(II)-EDTA rapidly at ∼3 × 107 M-1 s-1, but also exhibited 2-3 orders of magnitude higher steady-state concentration than HO•/SO4•-, leading to highly efficient and selective degradation of Cu(II)-EDTA even in complex matrices. The ternary Cu(II)-OOSO3- complexes derived from Cu(II)-EDTA decomposition could generate Cu(III) in situ via the Cu(II)-Cu(I)-Cu(III)-Cu(II) cycle involving intramolecular electron transfer. This method was also applicable to various Cu(II) complexes in real electroplating wastewater, demonstrating higher energy efficiency than commonly studied UV-based AOPs. This study provids a proof of concept for efficient decomplexation through activating complexed heavy metals into endogenous reactive species.

6.
Environ Sci Technol ; 58(6): 2922-2930, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38294405

RESUMEN

Microplastics (MPs) are pollutants of global concern, and bioaccumulation determines their biological effects. Although microorganisms form a large fraction of our ecosystem's biomass and are important in biogeochemical cycling, their accumulation of MPs has never been confirmed in natural waters because current tools for field biological samples can detect only MPs > 10 µm. Here, we show that stimulated Raman scattering microscopy (SRS) can image and quantify the bioaccumulation of small MPs (<10 µm) in protozoa. Our label-free method, which differentiates MPs by their SRS spectra, detects individual and mixtures of different MPs (e.g., polyethylene, polypropylene, polyvinyl chloride, polyethylene terephthalate, polystyrene, and poly(methyl methacrylate)) in protozoa. The ability of SRS to quantify cellular MP accumulation is similar to that of flow cytometry, a fluorescence-based method commonly used to determine cellular MP accumulation. Moreover, we discovered that protozoa in water samples from Yangtze River, Xianlin Wastewater Treatment Plant, Lake Taihu and the Pearl River Estuary accumulated MPs < 10 µm, but the proportion of MP-containing cells was low (∼2-5%). Our findings suggest that small MPs could potentially enter the food chain and transfer to organisms at higher trophic levels, posing environmental and health risks that deserve closer scrutiny.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Plásticos , Bioacumulación , Ecosistema , Microscopía Óptica no Lineal , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente/métodos
7.
Nat Commun ; 15(1): 917, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38296948

RESUMEN

Heterogeneous Fenton reaction represents one of the most reliable technologies to ensure water safety, but is currently challenged by the sluggish Fe(III) reduction, excessive input of chemicals for organic mineralization, and undesirable carbon emission. Current endeavors to improve the catalytic performance of Fenton reaction are mostly focused on how to accelerate Fe(III) reduction, while the pollutant degradation step is habitually overlooked. Here, we report a nanoconfinement strategy by using graphene aerogel (GA) to support UiO-66-NH2-(Zr) binding atomic Fe(III), which alters the carbon transfer route during phenol removal from kinetically favored ring-opening route to thermodynamically favored oligomerization route. GA nanoconfinement favors the Fe(III) reduction by enriching the reductive intermediates and allows much faster phenol removal than the unconfined analog (by 208 times in terms of first-order rate constant) and highly efficient removal of total organic carbon, i.e., 92.2 ± 3.7% versus 3.6 ± 0.3% in 60 min. Moreover, this oligomerization route reduces the oxidant consumption for phenol removal by more than 95% and carbon emission by 77.9%, compared to the mineralization route in homogeneous Fe2++H2O2 system. Our findings may upgrade the regulatory toolkit for Fenton reactions and provide an alternative carbon transfer route for the removal of aqueous pollutants.

8.
Environ Sci Technol ; 58(1): 826-835, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38154031

RESUMEN

In the development of nanoenabled technologies for large-scale water treatment, immobilizing nanosized functional materials into the confined space of suitable substrates is one of the most effective strategies. However, the intrinsic effects of nanoconfinement on the decontamination performance of nanomaterials, particularly in terms of structural modulation, are rarely unveiled. Herein, we investigate the structure evolution and decontamination performance of iron (hydr)oxide nanoparticles, a widely used material for water treatment, when confined in track-etched (TE) membranes with channel sizes varying from 200 to 20 nm. Nanoconfinement drives phase transformation from ferrihydrite to goethite, rather than to hematite occurring in bulk systems, and the increase in the nanoconfinement degree from 200 to 20 nm leads to a significant drop in the fraction of the goethite phase within the aged products (from 41% to 0%). The nanoconfinement configuration is believed to greatly slow down the phase transformation kinetics, thereby preserving the specific adsorption of ferrihydrite toward As(V) even after 20-day aging at 343 K. This study unravels the structure evolution of confined iron hydroxide nanoparticles and provides new insights into the temporospatial effects of nanoconfinement on improving the water decontamination performance.


Asunto(s)
Hierro , Purificación del Agua , Hierro/química , Óxidos , Compuestos Férricos/química , Minerales/química , Adsorción
9.
Nano Lett ; 23(22): 10458-10465, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37922401

RESUMEN

In this study, we present a novel approach for selective Li-ion extraction from brine using an LiMn2O4 ion sieve coated with a dense silica layer, denoted as LMO@SiO2. The SiO2 layer is controllably coated onto the LMO surface, forming passivation layers and ion permeation filters. This design effectively minimizes the acidic corrosion of the LMO and enhances the Li+ adsorption capacity. Additionally, the SiO2 layer undergoes calcination at various temperatures (ranging from 300 to 700 °C) to achieve different compactness levels of the coating layer, providing further protection to the LMO crystal structures. As a result of these improvements, the optimized LMO@SiO2 adsorbent demonstrates an exceptional Li+ adsorption capacity of 18.5 mg/g for brine, and even after seven adsorption-elution cycles, it maintains a capacity of 15.3 mg/g. This outstanding performance makes our material a promising candidate for efficient Li+ extraction from brine or other low-concentration Li+ solutions in future applications.

10.
Anal Chem ; 95(39): 14551-14557, 2023 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-37723602

RESUMEN

In order to identify emerging per- and polyfluoroalkyl substances (PFASs) and their alternatives in the environment or population, we need to perform extensive profiling of PFASs to determine their distribution in samples. The sequential window acquisition of all theoretical fragment-ion spectra (SWATH mode) is capable of obtaining a wide range of MS2 spectra but is difficult for direct identification of PFASs due to its complex MS2 spectra, and the nontarget screening method is difficult to identify due to its lack of a priori information. In this study, we demonstrated the great potential of SWATH-F, a nontarget fragment-based homologue screening method in combination with the SWATH-MS deconvolution, for detecting PFASs. We evaluated the application of SWATH-F to gradient spiked samples and real population serum samples, compared it with nontarget homologue screening in the information-dependent acquisition mode (IDA mode), and obtained better results for SWATH-F with 276% improvement (IDA:17 PFASs, SWATH-F: 64 PFASs) in identification. In addition, we automated the screening and identification process of SWATH-F to facilitate its use by researchers. SWATH-F is freely available on GitHub (https://github.com/njuIrene/SWATH-F) under an MIT license.

11.
iScience ; 26(8): 107492, 2023 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-37609634

RESUMEN

Polyethylene terephthalate (PET) is the most produced polyester plastic; its waste has a disruptive impact on the environment and ecosystem. Here, we report a catalytic depolymerization of PET into bis(2-hydroxyethyl) terephthalate (BHET) using molecule oxygen (O2)-assisted in defect-rich ZnO. At air, the PET conversion rate, the BHET yield, and the space-time yield are 3.5, 10.6, and 10.6 times higher than those in nitrogen, respectively. Combining structural characterization with the results of DFT calculations, we conclude that the (100) facet of defect-rich ZnO nanosheets conducive to the formation of reactive oxygen species (∗O2-) and Zn defect, promotes the PET breakage of the ester bond and thus complete the depolymerization processed. This approach demonstrates a sustainable route for PET depolymerization by molecule-assisted defect engineering.

12.
Proc Natl Acad Sci U S A ; 120(35): e2305255120, 2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37603736

RESUMEN

As a classic strategy to maximize catalytic activity, modulation of the electronic structure of central metal using organic ligands encounters great challenge in radical reactions exemplified by advanced oxidation processes (AOPs) due to operando destruction of employed ligands. Herein, we provide a paradigm achieving in situ ligand-modulated activation of the originally inert Ce(III/IV) for catalytic ozonation as a representative AOP widely applied in full-scale water treatment. Among the small-molecule carboxylates typically produced from pollutant degradation during ozonation, we find oxalate (OA) is a potent ligand to activate Ce(III/IV), inducing 11.5- and 5.8-fold elevation in rate constants of O3 decomposition and atrazine degradation, respectively. The Ce(III)-OA complex is proved the catalytic active species to boost pollutant degradation, while the catalytic ozonation unusually involves both •OH-dependent and •OH-independent pathways with comparable contributions. Both experiment and density functional theory calculation results show the pronounced electron donating effect of OA as evidenced by the substantial decreases in the charge residing on Ce, the ionization potential, and the Ce(III/IV) electrode potential, affords the activation of the Ce center for efficient ozonation. A comprehensive kinetic model involving 67 reactions is established to verify and elaborate the catalytic mechanism. Moreover, with in situ OA production, trace Ce3+ enables autocatalytic mineralization and codegradation of typical contaminants, which are not observed in case of Fe2+ or Cu2+. In addition, Ce3+ outperforms numerous state-of-the-art ozonation catalysts in terms of mass activity. This study sheds light on sustainable activation of the metal center harnessing operando ligands produced from the catalyzed reaction.

13.
Nat Commun ; 14(1): 4907, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37582789

RESUMEN

Membranes with high ion permeability and selectivity are of considerable interest for sustainable water treatment, resource extraction and energy storage. Herein, inspired by K+ channel of streptomyces A (KcsA K+), we have constructed cation sieving membranes using MXene nanosheets and Ethylenediaminetetraacetic acid (EDTA) molecules as building blocks. Numerous negatively charged oxygen atoms of EDTA molecules and 6.0 Å two-dimensional (2D) sub-nanochannel of MXene nanosheets enable biomimetic channel size, chemical groups and tunable charge density for the resulting membranes. The membranes show the capability to recognize monovalent/divalent cations, achieving excellent K+/Mg2+ selectivity of 121.2 using mixed salt solution as the feed, which outperforms other reported membranes under similar testing conditions and transcends the current upper limit. Characterization and simulations indicate that the cation recognition effect of EDTA and partial dehydration effects play critical roles in cations selective sieving and increasing the local charge density within the sub-nanochannel significantly improves cation selectivity. Our findings provide a theoretical basis for ions transport in sub-nanochannels and an alternative strategy for design ions separation membranes.

14.
Water Res ; 242: 120289, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37413748

RESUMEN

Industrial wastewater is a substantial source of per- and polyfluoroalkyl substances (PFASs) in the environment. However, very limited information is available on the occurrences and fates of PFASs along industrial wastewater treatment processes, particularly for the textile dyeing industry where PFASs occur extensively. Herein, the occurrences and fates of 27 legacy and emerging PFASs were investigated along the processes of three full-scale textile dyeing wastewater treatment plants (WWTPs) based on UHPLC-MS/MS in combination with self-developed solid extraction protocol featuring selective enrichment for ultrasensitive analysis. The total PFASs ranged at 630-4268 ng L-1 in influents, 436-755 ng L-1 in effluents, and 91.5-1182 µg kg-1 in the resultant sludge. PFAS species distribution varied among WWTPs, with one WWTP dominated by legacy perfluorocarboxylic acids while the other two dominated by emerging PFASs. Perfluorooctane sulfonate (PFOS) was trivial in the effluents from all the three WWTPs, indicating its diminished use in textile industry. Various emerging PFASs were detected at different abundances, demonstrating their use as alternatives to legacy PFASs. Most conventional processes of the WWTPs were inefficient in removing PFASs, especially for the legacy PFASs. The microbial processes could remove the emerging PFASs to different extents, whereas commonly elevated the concentrations of legacy PFASs. Over 90% of most PFASs could be removed by reverse osmosis (RO) and was enriched into the RO concentrate accordingly. The total oxidizable precursors (TOP) assay revealed that the total concentration of PFASs was increased by 2.3-4.1 times after oxidation, accompanied by formation of terminal perfluoroalkyl acids (PFAAs) and degradation of emerging alternatives to various extents. This study is believed to shed new light on the monitoring and management of PFASs in industries.

15.
Environ Sci Technol ; 57(24): 9096-9104, 2023 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-37289934

RESUMEN

Catalytic combustion has been known to be an effective technique in volatile organic compound (VOC) abatement. Developing monolithic catalysts with high activity at low temperatures is vital yet challenging in industrial applications. Herein, monolithic MnO2-Ov/CF catalysts were fabricated via the in situ growth of K2CuFe(CN)6 (CuFePBA, a family of metal-organic frames) over copper foam (CF) followed by a redox-etching route. The as-synthesized monolith MnO2-Ov-0.04/CF catalyst displays a superior low-temperature activity (T90% = 215 °C) and robust durability for toluene elimination even in the presence of 5 vol % water. Experimental results reveal that the CuFePBA template not only guides the in situ growth of δ-MnO2 with high loading over CF but also acts as a source of dopant to create more oxygen vacancies and weaken the strength of the Mn-O bond, which considerably improves the oxygen activation ability of δ-MnO2 and consequently boosts the low-temperature catalytic activity of the monolith MnO2-Ov-0.04/CF toward toluene oxidation. In addition, the reaction intermediate and proposed mechanism in the MnO2-Ov-0.04/CF mediated catalytic oxidation process were investigated. This study provides new insights into the development of highly active monolithic catalysts for the low-temperature oxidation of VOCs.


Asunto(s)
Cobre , Óxidos , Óxidos/química , Oxígeno , Compuestos de Manganeso/química , Tolueno/química , Oxidación-Reducción , Catálisis
16.
Environ Sci Technol ; 57(26): 9874-9883, 2023 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-37335829

RESUMEN

Advanced techniques for nickel (Ni(II)) removal from polluted waters have long been desired but challenged by the diversity of Ni(II) species (most in the form of complexes) which could not be readily discriminated by the traditional analytical protocols. Herein, a colorimetric sensor array is developed to address the above issue based on the shift of the UV-vis spectra of gold nanoparticles (Au NPs) after interaction with Ni(II) species. The sensor array is composed of three Au NP receptors modified by N-acetyl-l-cysteine (NAC), tributylhexadecylphosphonium bromide (THPB), and the mixture of 3-mercapto-1-propanesulfonic acid and adenosine monophosphate (MPS/AMP), to exhibit possible coordination, electrostatic attraction, and hydrophobic interaction toward different Ni(II) species. Twelve classical Ni(II) species were selected as targets to systematically demonstrate the applicability of the sensor array under various conditions. Multiple interactions with Ni(II) species were evidenced to trigger the diverse Au NP aggregation behaviors and subsequently produce a distinct colorimetric response toward each Ni(II) species. With the assistance of multivariate analysis, the Ni(II) species, either as the sole compound or as mixtures, can be unambiguously discriminated with high selectivity in simulated and real water samples. Moreover, the sensor array is very sensitive with the detection limit in the range of 4.2 to 10.5 µM for the target Ni(II) species. Principal component analysis signifies that coordination dominates the response of the sensor array toward different Ni(II) species. The accurate Ni(II) speciation provided by the sensor array is believed to assist the rational design of specific protocols for water decontamination and to shed new light on the development of convenient discrimination methods for other toxic metals of concern.


Asunto(s)
Oro , Nanopartículas del Metal , Oro/química , Nanopartículas del Metal/química , Níquel/química , Colorimetría , Agua
17.
Environ Sci Technol ; 57(22): 8335-8346, 2023 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-37211672

RESUMEN

Antimicrobial transformation products (ATPs) in the environment have raised extensive concerns in recent years due to their potential health risks. However, only a few ATPs have been investigated, and most of the transformation pathways of antimicrobials have not been completely elucidated. In this study, we developed a nontarget screening strategy based on molecular networks to detect and identify ATPs in pharmaceutical wastewater. We identified 52 antimicrobials and 49 transformation products (TPs) with a confidence level of three or above. Thirty of the TPs had not been previously reported in the environment. We assessed whether TPs could be classified as persistent, mobile, and toxic (PMT) substances based on recent European criteria for industrial substances. Owing to poor experimental data, definitive PMT classifications could not be established for novel ATPs. PMT assessment based on structurally predictive physicochemical properties revealed that 47 TPs were potential PMT substances. These results provide evidence that novel ATPs should be the focus of future research.


Asunto(s)
Antiinfecciosos , Contaminantes Químicos del Agua , Aguas Residuales , Contaminantes Químicos del Agua/análisis
18.
Environ Sci Technol ; 57(47): 18918-18928, 2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-37061925

RESUMEN

Improving the reactivity of Fe(III) for activating peroxymonosulfate (PMS) at circumneutral pH is critical to propel the iron-activated PMS processes toward practical wastewater treatment but is yet challenging. Here we employed the complexes of Fe(III) with the biodegradable picolinic acid (PICA) to activate PMS for degradation of selected chlorinated phenols, antibiotics, pharmaceuticals, herbicides, and industrial compounds at pH 4.0-6.0. The FeIII-PICA complexes greatly outperformed the ligand-free Fe(III) and other Fe(III) complexes of common aminopolycarboxylate ligands. In the main activation pathway, the key intermediate is a peroxymonosulfate complex, tentatively identified as PICA-FeIII-OOSO3-, which undergoes O-O homolysis or reacts with FeIII-PICA and PMS to yield FeIV=O and SO4•- without the involvement of commonly invoked Fe(II). PICA-FeIII-OOSO3- can also react directly with certain compounds (chlorophenols and sulfamethoxazole). The relative contributions of PICA-FeIII-OOSO3-, FeIV=O, and SO4•- depend on the structure of target compounds. This work sets an eligible example to enhance the reactivity of Fe(III) toward PMS activation by ligands and sheds light on the previously unrecognized role of the metal-PMS complexes in directing the catalytic cycle and decontamination as well.


Asunto(s)
Compuestos Férricos , Purificación del Agua , Compuestos Férricos/química , Peróxidos/química , Concentración de Iones de Hidrógeno
19.
Environ Sci Technol ; 57(11): 4556-4567, 2023 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-36894515

RESUMEN

Dual-atom catalysts (DACs) are promising candidates for various catalytic reactions, including electrocatalysis, chemical synthesis, and environmental remediation. However, the high-activity origin and mechanism underlying intrinsic activity enhancement remain elusive, especially for the Fenton-like reaction. Herein, we systematically compared the catalytic performance of dual-atom FeCo-N/C with its single-atom counterparts by activating peroxymonosulfate (PMS) for pollutant abatement. The unusual spin-state reconstruction on FeCo-N/C is demonstrated to effectively improve the electronic structure of Fe and Co in the d orbital and enhance the PMS activation efficiency. Accordingly, the dual-atom FeCo-N/C with an intermediate-spin state remarkably boosts the Fenton-like reaction by almost 1 order of magnitude compared with low-spin Co-N/C and high-spin Fe-N/C. Moreover, the established dual-atom-activated PMS system also exhibits excellent stability and robust resistance against harsh conditions. Combined theoretical calculations reveal that unlike unitary Co atom or Fe atom transferring electrons to the PMS molecule, the Fe atom of FeCo-N/C provides extra electrons to the neighboring Co atom and positively shifts the d band of the Co center, thereby optimizing the PMS adsorption and decomposition into a unique high-valent FeIV-O-CoIV species via a low-energy barrier pathway. This work advances a conceptually novel mechanistic understanding of the enhanced catalytic activity of DACs in Fenton-like reactions and helps to expand the application of DACs in various catalytic reactions.


Asunto(s)
Electrónica , Electrones , Adsorción , Catálisis
20.
Water Res ; 230: 119562, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36603306

RESUMEN

Hydrogen peroxide (H2O2) is the most commonly used oxidant in advanced oxidation processes for emerging organic contaminant degradation. However, the activation of H2O2 to generate reactive oxygen species is always accompanied by O2 generation resulting in H2O2 waste. Here, we prepare a Ti doped Mn3O4/Fe3O4 ternary catalyst (Ti-Mn3O4/Fe3O4) to create abundant oxygen vacancies (OVs), which yields electron delocalization impacts on enhancing the electrical conductivity, accelerating the activation of O2 to produce H2O2. In Ti-Mn3O4/Fe3O4/H2O2 system, OVs-mediated O2/O2•-/H2O2 redox cycles trigger the activation of locally generated O2, boost the regeneration of O2•- and on site produce H2O2 for replenishment. This leads to a 100% removal of tiamulin in 30 min at an unprecedented H2O2 utilization efficiency of 96.0%, which is 24 folds higher than that with Fe3O4/H2O2. Importantly, further integration of Ti-Mn3O4/Fe3O4 catalysts into membrane filtration achieved high rejections of tiamulin (> 83.9%) from real surface water during a continuous 12-h operation, demonstrating broad pH adaptability, excellent catalytic stability and leaching resistance. This work demonstrates a feasible strategy for developing OVs-rich catalysts for improving H2O2 utilization efficiency via activation of locally generated oxygen during the Haber-Weiss reaction.


Asunto(s)
Peróxido de Hidrógeno , Oxígeno , Oxidación-Reducción , Oxidantes , Catálisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...