Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Br J Pharmacol ; 181(4): 564-579, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-36694432

RESUMEN

BACKGROUND AND PURPOSE: Platelet function during inflammation is dependent on activation by endogenous nucleotides. Non-canonical signalling via the P2Y1 receptor is important for these non-thrombotic functions of platelets. However, apart from ADP, the role of other endogenous nucleotides acting as agonists at P2Y1 receptors is unknown. This study compared the effects of ADP, Ap3A, NAD+ , ADP-ribose, and Up4A on platelet functions contributing to inflammation or haemostasis. EXPERIMENTAL APPROACH: Platelets obtained from healthy human volunteers were incubated with ADP, Ap3A, NAD+ , ADP-ribose, or Up4A, with aggregation and fibrinogen binding measured (examples of function during haemostasis) or before exposure to fMLP to measure platelet chemotaxis (an inflammatory function). In silico molecular docking of these nucleotides to the binding pocket of P2Y1 receptors was then assessed. KEY RESULTS: Platelet aggregation and binding to fibrinogen induced by ADP was not mimicked by NAD+ , ADP-ribose, and Up4A. However, these endogenous nucleotides induced P2Y1 -dependent platelet chemotaxis, an effect that required RhoA and Rac-1 activity, but not canonical PLC activity. Analysis of molecular docking of the P2Y1 receptor revealed distinct differences of amino acid interactions and depth of fit within the binding pocket for Ap3A, NAD+ , ADP-ribose, or Up4A compared with ADP. CONCLUSION AND IMPLICATIONS: Platelet function (aggregation vs motility) can be differentially modulated by biased-agonist activation of P2Y1 receptors. This may be due to the character of the ligand-binding pocket interaction. This has implications for future therapeutic strategies aimed to suppress platelet activation during inflammation without affecting haemostasis as is the requirement of current ant-platelet drugs. LINKED ARTICLES: This article is part of a themed issue on Platelet purinergic receptor and non-thrombotic disease. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.4/issuetoc.


Asunto(s)
Plaquetas , NAD , Humanos , Simulación del Acoplamiento Molecular , NAD/metabolismo , Adenosina Difosfato/farmacología , Adenosina Difosfato/metabolismo , Agregación Plaquetaria , Inflamación/metabolismo , Fibrinógeno/metabolismo , Fibrinógeno/farmacología , Adenosina Difosfato Ribosa/metabolismo , Adenosina Difosfato Ribosa/farmacología , Receptores Purinérgicos P2Y1/metabolismo , Receptores Purinérgicos P2Y12/metabolismo
2.
Br J Pharmacol ; 181(4): 513-514, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38093587

RESUMEN

LINKED ARTICLES: This article is part of a themed issue on Platelet purinergic receptor and non-thrombotic disease. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.4/issuetoc.


Asunto(s)
Plaquetas , Receptores Purinérgicos , Humanos
3.
Br J Pharmacol ; 181(4): 580-592, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-37442808

RESUMEN

Platelets are necessary for maintaining haemostasis. Separately, platelets are important for the propagation of inflammation during the host immune response against infection. The activation of platelets also causes inappropriate inflammation in various disease pathologies, often in the absence of changes to haemostasis. The separate functions of platelets during inflammation compared with haemostasis are therefore varied and this will be reflected in distinct pathways of activation. The activation of platelets by the nucleotide adenosine diphosphate (ADP) acting on P2Y1 and P2Y12 receptors is important for the development of platelet thrombi during haemostasis. However, P2Y1 stimulation of platelets is also important during the inflammatory response and paradoxically in scenarios where no changes to haemostasis and platelet aggregation occur. In these events, Rho-GTPase signalling, rather than the canonical phospholipase Cß (PLCß) signalling pathway, is necessary. We describe our current understanding of these differences, reflecting on recent advances in knowledge of P2Y1 structure, and the possibility of biased agonism occurring from activation via other endogenous nucleotides compared with ADP. Knowledge arising from these different pathways of P2Y1 stimulation of platelets during inflammation compared with haemostasis may help therapeutic control of platelet function during inflammation or infection, while preserving essential haemostasis. LINKED ARTICLES: This article is part of a themed issue on Platelet purinergic receptor and non-thrombotic disease. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.4/issuetoc.


Asunto(s)
Plaquetas , Agregación Plaquetaria , Humanos , Adenosina Difosfato/metabolismo , Plaquetas/fisiología , Transducción de Señal , Inflamación/metabolismo , Receptores Purinérgicos P2Y1/metabolismo , Receptores Purinérgicos P2Y12/metabolismo , Activación Plaquetaria
4.
Blood Adv ; 5(16): 3076-3091, 2021 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-34402884

RESUMEN

Streptococcal pneumonia is a worldwide health problem that kills ∼2 million people each year, particularly young children, the elderly, and immunosuppressed individuals. Alveolar macrophages and neutrophils provide the early innate immune response to clear pneumococcus from infected lungs. However, the level of neutrophil involvement is context dependent, both in humans and in mouse models of the disease, influenced by factors such as bacterial load, age, and coinfections. Here, we show that the G protein-coupled receptor (GPCR) adaptor protein norbin (neurochondrin, NCDN), which was hitherto known as a regulator of neuronal function, is a suppressor of neutrophil-mediated innate immunity. Myeloid norbin deficiency improved the immunity of mice to pneumococcal infection by increasing the involvement of neutrophils in clearing the bacteria, without affecting neutrophil recruitment or causing autoinflammation. It also improved immunity during Escherichia coli-induced septic peritonitis. It increased the responsiveness of neutrophils to a range of stimuli, promoting their ability to kill bacteria in a reactive oxygen species-dependent manner, enhancing degranulation, phagocytosis, and the production of reactive oxygen species and neutrophil extracellular traps, raising the cell surface levels of selected GPCRs, and increasing GPCR-dependent Rac and Erk signaling. The Rac guanine-nucleotide exchange factor Prex1, a known effector of norbin, was dispensable for most of these effects, which suggested that norbin controls additional downstream targets. We identified the Rac guanine-nucleotide exchange factor Vav as one of these effectors. In summary, our study presents the GPCR adaptor protein norbin as an immune suppressor that limits the ability of neutrophils to clear bacterial infections.


Asunto(s)
Neutrófilos , Infecciones Neumocócicas , Animales , Ratones , Ratones Noqueados , Neuropéptidos , Receptores Acoplados a Proteínas G
5.
J Allergy Clin Immunol ; 143(3): 1047-1057.e8, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30017554

RESUMEN

BACKGROUND: Classical FcεRI-induced mast cell (MC) activation causes synthesis of arachidonic acid (AA)-derived eicosanoids (leukotriene [LT] C4, prostaglandin [PG] D2, and thromboxane A2), which mediate vascular leak, bronchoconstriction, and effector cell chemotaxis. Little is known about the significance and regulation of eicosanoid generation in response to nonclassical MC activation mechanisms. OBJECTIVES: We sought to determine the regulation and significance of MC-derived eicosanoids synthesized in response to IL-33, a cytokine critical to innate type 2 immunity. METHODS: We used an ex vivo model of mouse bone marrow-derived mast cells and an IL-33-dependent in vivo model of aspirin-exacerbated respiratory disease (AERD). RESULTS: IL-33 potently liberates AA and elicits LTC4, PGD2, and thromboxane A2 production by bone marrow-derived mast cells. Unexpectedly, the constitutive function of COX-1 is required for IL-33 to activate group IVa cytosolic phospholipase A2 with consequent AA release for synthesis of all eicosanoids, including CysLTs. In contrast, COX-1 was dispensable for FcεRI-driven CysLT production. Inhibition of COX-1 prevented IL-33-induced phosphorylation of extracellular signal-related kinase, an upstream effector of cytosolic phospholipase A2, which was restored by exogenous PGH2, implying that the effects of COX-1 required its catalytic function. Administration of a COX-1-selective antagonist to mice completely prevented the generation of both PGD2 and LTC4 in a model of AERD in which MC activation is IL-33 driven. CONCLUSIONS: MC-intrinsic COX-1 amplifies IL-33-induced activation in the setting of innate type 2 immunity and might help explain the phenomenon of therapeutic desensitization to aspirin by nonselective COX inhibitors in patients with AERD.


Asunto(s)
Asma Inducida por Aspirina/inmunología , Ciclooxigenasa 1/inmunología , Quinasas MAP Reguladas por Señal Extracelular/inmunología , Interleucina-33/inmunología , Mastocitos/inmunología , Proteínas de la Membrana/inmunología , Animales , Células Cultivadas , Ciclooxigenasa 2/inmunología , Inhibidores de la Ciclooxigenasa/farmacología , Eicosanoides/inmunología , Ratones Endogámicos C57BL , Ratones Noqueados , Fosfolipasas A2 Citosólicas/inmunología
6.
Curr Opin Hematol ; 24(1): 23-31, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27820736

RESUMEN

PURPOSE OF REVIEW: This review describes the essential roles of platelets in neutrophil recruitment from the bloodstream into inflamed and infected tissues, with a focus on recent findings. RECENT FINDINGS: Platelets are required for the recruitment of neutrophils to sites of inflammation and infection. They fulfil this role largely by enabling contacts of circulating neutrophils with the inflamed blood vessel wall prior to extravasation. Platelets promote both early stages of neutrophil recruitment (tethering, rolling, arrest, firm adhesion) and - as recent work has demonstrated - later stages (intravascular crawling and diapedesis). Recent studies have also begun to identify platelet-signaling pathways that can elicit the underlying interactions between platelets, neutrophils and vascular endothelial cells without stimulating concomitant platelet aggregation and thrombus formation. These pathways include Rho-guanine-nucleotide binding proteins and Rho-guanine-nucleotide exchange factors. SUMMARY: Recent findings have contributed to our burgeoning understanding of the platelet-dependent mechanisms that control neutrophil recruitment to sites of inflammation and have opened up new avenues of research aimed at increasing our knowledge of these mechanisms further. These insights might lead to the development of novel anti-inflammatory drugs that will be useful in a wide range of inflammatory diseases without causing immunodeficiency.


Asunto(s)
Plaquetas/metabolismo , Inflamación/etiología , Inflamación/metabolismo , Infiltración Neutrófila , Neutrófilos/inmunología , Neutrófilos/metabolismo , Animales , Comunicación Celular , Humanos , Inflamación/patología , Factores de Intercambio de Guanina Nucleótido Rho/genética , Factores de Intercambio de Guanina Nucleótido Rho/metabolismo , Transducción de Señal , Proteínas de Unión al GTP rho/genética , Proteínas de Unión al GTP rho/metabolismo
7.
J Biol Chem ; 291(12): 6359-75, 2016 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-26792863

RESUMEN

P-Rex1 is a guanine-nucleotide exchange factor (GEF) that activates the small G protein (GTPase) Rac1 to control Rac1-dependent cytoskeletal dynamics, and thus cell morphology. Three mechanisms of P-Rex1 regulation are currently known: (i) binding of the phosphoinositide second messenger PIP3, (ii) binding of the Gßγ subunits of heterotrimeric G proteins, and (iii) phosphorylation of various serine residues. Using recombinant P-Rex1 protein to search for new binding partners, we isolated the G-protein-coupled receptor (GPCR)-adaptor protein Norbin (Neurochondrin, NCDN) from mouse brain fractions. Coimmunoprecipitation confirmed the interaction between overexpressed P-Rex1 and Norbin in COS-7 cells, as well as between endogenous P-Rex1 and Norbin in HEK-293 cells. Binding assays with purified recombinant proteins showed that their interaction is direct, and mutational analysis revealed that the pleckstrin homology domain of P-Rex1 is required. Rac-GEF activity assays with purified recombinant proteins showed that direct interaction with Norbin increases the basal, PIP3- and Gßγ-stimulated Rac-GEF activity of P-Rex1. Pak-CRIB pulldown assays demonstrated that Norbin promotes the P-Rex1-mediated activation of endogenous Rac1 upon stimulation of HEK-293 cells with lysophosphatidic acid. Finally, immunofluorescence microscopy and subcellular fractionation showed that coexpression of P-Rex1 and Norbin induces a robust translocation of both proteins from the cytosol to the plasma membrane, as well as promoting cell spreading, lamellipodia formation, and membrane ruffling, cell morphologies generated by active Rac1. In summary, we have identified a novel mechanism of P-Rex1 regulation through the GPCR-adaptor protein Norbin, a direct P-Rex1 interacting protein that promotes the Rac-GEF activity and membrane localization of P-Rex1.


Asunto(s)
Factores de Intercambio de Guanina Nucleótido/metabolismo , Proteínas del Tejido Nervioso/fisiología , Animales , Encéfalo , Células COS , Forma de la Célula , Extensiones de la Superficie Celular/metabolismo , Chlorocebus aethiops , Activación Enzimática , Células HEK293 , Humanos , Ratones Noqueados , Especificidad de Órganos , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Transporte de Proteínas
8.
Curr Opin Hematol ; 23(1): 44-54, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26619317

RESUMEN

PURPOSE OF REVIEW: The review describes the roles of Rho- and Rap-guanosine triphosphatases (GTPases) and of their activators, guanine-nucleotide exchange factors (GEFs), and inhibitors, GTPase activating proteins (GAPs), in neutrophil recruitment from the blood stream into inflamed tissues, with a focus on recently identified roles in neutrophils, endothelial cells, and platelets. RECENT FINDINGS: Recent studies have identified important roles of Rho- and Rap-GTPases, and of their GEFs and GAPs, in the neutrophil recruitment cascade. These proteins control the upregulation and/or activation of adhesion molecules on the surface of neutrophils, endothelial cells, and platelets, and they alter cell/cell adhesion in the vascular endothelium. This enables the capture of neutrophils from the blood stream, their migration along and through the vessel wall, and their passage into the inflamed tissue. In particular, it has recently become clear that P-Rex and Vav family Rac-GEFs in platelets are crucial for neutrophil recruitment. SUMMARY: These recent findings have contributed greatly to our understanding of the signalling pathways that control neutrophil recruitment to sites of inflammation and have opened up new avenues of research in this field.


Asunto(s)
Proteínas Activadoras de GTPasa/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Proteínas de Unión al GTP Monoméricas/metabolismo , Infiltración Neutrófila/fisiología , Neutrófilos/fisiología , Animales , Plaquetas/metabolismo , Células Endoteliales/metabolismo , Humanos , Unión Proteica , Transducción de Señal , Proteínas de Unión al GTP rap/metabolismo , Proteínas de Unión al GTP rho/metabolismo
9.
Sci Signal ; 8(360): ra8, 2015 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-25605974

RESUMEN

Neutrophils, which migrate toward inflamed sites and kill pathogens by producing reactive oxygen species (ROS), are important in the defense against bacterial and fungal pathogens, but their inappropriate regulation causes various chronic inflammatory diseases. Phosphoinositide 3-kinase γ (PI3Kγ) functions downstream of proinflammatory G protein (heterotrimeric guanine nucleotide-binding protein)-coupled receptors (GPCRs) in neutrophils and is a therapeutic target. In neutrophils, PI3Kγ consists of a p110γ catalytic subunit, which is activated by the guanosine triphosphatase Ras, and either a p84 or p101 regulatory subunit. Loss or inhibition of p110γ or expression of a Ras-insensitive variant p110γ (p110γ(DASAA/DASAA)) impairs PIP3 production, Akt phosphorylation, migration, and ROS formation in response to GPCR activation. The p101 subunit binds to, and mediates PI3Kγ activation by, G protein ßγ subunits, and p101(-/-) neutrophils have a similar phenotype to that of p110γ(-/-) neutrophils, except that ROS responses are normal. We found that p84(-/-) neutrophils displayed reduced GPCR-stimulated PIP3 and Akt signaling, which was indistinguishable from that of p101(-/-) neutrophils. However, p84(-/-) neutrophils produced less ROS and exhibited normal migration in response to GPCR stimulation. These data suggest that p84-containing PI3Kγ controls GPCR-dependent ROS production. Thus, the PI3Kγ regulatory subunits enable PI3Kγ to mediate distinct neutrophil responses, which may occur by targeting PIP3 signaling into spatially distinct domains.


Asunto(s)
Movimiento Celular/inmunología , Fosfatidilinositol 3-Quinasa Clase Ib/metabolismo , Neutrófilos/inmunología , Subunidades de Proteína/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/inmunología , Actinas/química , Animales , Western Blotting , Calcio/metabolismo , Separación Celular/métodos , Fosfatidilinositol 3-Quinasa Clase Ib/genética , Diacilglicerol Quinasa , Citometría de Flujo , Vectores Genéticos/genética , Espectrometría de Masas , Ratones , Ratones Noqueados , Neutrófilos/metabolismo , Proteína Oncogénica v-akt/metabolismo , Fosforilación , Polimerizacion , Subunidades de Proteína/genética , Transducción de Señal/genética
10.
Blood ; 125(7): 1146-58, 2015 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-25538043

RESUMEN

The small GTPase Rac is required for neutrophil recruitment during inflammation, but its guanine-nucleotide exchange factor (GEF) activators seem dispensable for this process, which led us to investigate the possibility of cooperation between Rac-GEF families. Thioglycollate-induced neutrophil recruitment into the peritoneum was more severely impaired in P-Rex1(-/-) Vav1(-/-) (P1V1) or P-Rex1(-/-) Vav3(-/-) (P1V3) mice than in P-Rex null or Vav null mice, suggesting cooperation between P-Rex and Vav Rac-GEFs in this process. Neutrophil transmigration and airway infiltration were all but lost in P1V1 and P1V3 mice during lipopolysaccharide (LPS)-induced pulmonary inflammation, with altered intercellular adhesion molecule 1-dependent slow neutrophil rolling and strongly reduced L- and E-selectin-dependent adhesion in airway postcapillary venules. Analysis of adhesion molecule expression, neutrophil adhesion, spreading, and migration suggested that these defects were only partially neutrophil-intrinsic and were not obviously involving vascular endothelial cells. Instead, P1V1 and P1V3 platelets recapitulated the impairment of LPS-induced intravascular neutrophil adhesion and recruitment, showing P-Rex and Vav expression in platelets to be crucial. Similarly, during ovalbumin-induced allergic inflammation, pulmonary recruitment of P1V1 and P1V3 eosinophils, monocytes, and lymphocytes was compromised in a platelet-dependent manner, and airway inflammation was essentially abolished, resulting in improved airway responsiveness. Therefore, platelet P-Rex and Vav family Rac-GEFs play important proinflammatory roles in leukocyte recruitment.


Asunto(s)
Plaquetas/metabolismo , Quimiotaxis de Leucocito/genética , Factores de Intercambio de Guanina Nucleótido/genética , Inflamación/genética , Inflamación/inmunología , Proteínas Proto-Oncogénicas c-vav/genética , Enfermedad Aguda , Animales , Adhesión Celular/genética , Factores de Intercambio de Guanina Nucleótido/metabolismo , Lipopolisacáridos , Ratones , Ratones Noqueados , Infiltración Neutrófila/genética , Neumonía/genética , Neumonía/inmunología , Proteínas Proto-Oncogénicas c-vav/metabolismo
11.
EMBO J ; 31(14): 3118-29, 2012 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-22728827

RESUMEN

The molecular mechanisms by which receptors regulate the Ras Binding Domains of the PIP3-generating, class I PI3Ks remain poorly understood, despite their importance in a range of biological settings, including tumorigenesis, activation of neutrophils by pro-inflammatory mediators, chemotaxis of Dictyostelium and cell growth in Drosophila. We provide evidence that G protein-coupled receptors (GPCRs) can stimulate PLCb2/b3 and diacylglycerol- dependent activation of the RasGEF, RasGRP4 in neutrophils. The genetic loss of RasGRP4 phenocopies knock-in of a Ras-insensitive version of PI3Kc in its effects on PI3Kc-dependent PIP3 accumulation, PKB activation, chemokinesis and reactive oxygen species (ROS) formation. These results establish a new mechanism by which GPCRs can stimulate Ras, and the broadly important principle that PLCs can control activation of class I PI3Ks.


Asunto(s)
Fosfatidilinositol 3-Quinasa Clase Ib/metabolismo , Neutrófilos/enzimología , Fosfolipasa C beta/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Factores de Intercambio de Guanina Nucleótido ras/metabolismo , Proteínas ras/metabolismo , Animales , Línea Celular , Fosfatidilinositol 3-Quinasa Clase Ib/genética , Activación Enzimática/fisiología , Humanos , Ratones , Ratones Noqueados , Fosfolipasa C beta/genética , Proteínas Proto-Oncogénicas c-akt/genética , Receptores Acoplados a Proteínas G/genética , Factores de Intercambio de Guanina Nucleótido ras/genética , Proteínas ras/genética
12.
J Biol Chem ; 286(1): 199-207, 2011 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-21056981

RESUMEN

α1-Chimaerin is a neuron-specific member of the Rho GTPase-activating protein family that selectively inactivates the small GTPase Rac. It is known to regulate the structure of dendrites and dendritic spines. We describe here that under basal conditions α1-chimaerin becomes polyubiquitinated and undergoes rapid proteasomal degradation. This degradation is partly dependent on the N-terminal region that is unique to this isoform. Mimicking diacylglycerol (DAG) signaling with a phorbol ester stabilizes endogenous α1-chimaerin against degradation and causes accumulation of the protein. The stabilization requires phorbol ester binding via the C1 domain of the protein and is independent of PKC activity. In addition, overexpression of a constitutively active Rac1 mutant is sufficient to cause an accumulation of α1-chimaerin through a phospholipase C-dependent mechanism, showing that endogenous DAG signaling can also stabilize the protein. These results suggest that signaling via DAG may regulate the abundance of α1-chimaerin under physiological conditions, providing a new model for understanding how its activity could be controlled.


Asunto(s)
Quimerina 1/química , Quimerina 1/metabolismo , Diglicéridos/metabolismo , Neuronas/citología , Neuronas/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Transducción de Señal , Secuencia de Aminoácidos , Animales , Células HEK293 , Humanos , Neuronas/efectos de los fármacos , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Estabilidad Proteica/efectos de los fármacos , Estructura Terciaria de Proteína/efectos de los fármacos , Ratas , Transducción de Señal/efectos de los fármacos , Especificidad por Sustrato , Acetato de Tetradecanoilforbol/farmacología , Ubiquitina/metabolismo , Proteína de Unión al GTP rac1/metabolismo
13.
Clin Vaccine Immunol ; 14(5): 593-9, 2007 May.
Artículo en Inglés | MEDLINE | ID: mdl-17344347

RESUMEN

Children who have siblings and/or who attend day care have higher rates of nasopharyngeal colonization with pneumococci than lone children do. Pneumococcal colonization is usually asymptomatic but is a prerequisite for invasive disease. We studied the effect of social mixing with other children on immunity to a pneumococcal vaccine. One hundred sixty children aged 1 year were immunized with a 7-valent conjugate pneumococcal vaccine. A blood sample was obtained before and 9 to 11 days after the vaccine. The concentration and avidity of antibody against vaccine pneumococcal serotypes (4, 6B, 9V, 14, 18C, 19F, and 23F) were studied in relation to pneumococcal carriage rate and measures of social mixing. Children with increased social mixing had higher antibody concentrations against serotypes 4, 9V, 14, and 23F than lone children did. The least-carried serotype, serotype 4, was the one of the most immunogenic. This contrasts with serotype 6B, the most common nasopharyngeal isolate but the least immunogenic. Social mixing in infancy enhances the immune response to a Streptococcus pneumoniae polysaccharide-protein conjugate vaccine at 1 year of age. Exposure to pneumococci in the first year of life may induce immunological priming. An alternative explanation is that differences in immunological experience, such as increased exposure to respiratory viral infections in early childhood, alters the response to vaccines perhaps by affecting the balance between Th1 and Th2 cytokines. The low immunogenicity of serotype 6B polysaccharide might make conditions more favorable for carriage of the 6B organism and explain why 6B pneumococci were more frequently isolated than other serotypes.


Asunto(s)
Anticuerpos Antibacterianos/sangre , Infecciones Neumocócicas/prevención & control , Vacunas Neumococicas/inmunología , Portador Sano/inmunología , Guarderías Infantiles , Femenino , Humanos , Inmunoglobulina G/sangre , Lactante , Relaciones Interpersonales , Masculino , Nasofaringe/microbiología , Hermanos , Vacunas Conjugadas/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...