Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 10(18): eadl2991, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38691615

RESUMEN

Amyloid fibrils of tau are increasingly accepted as a cause of neuronal death and brain atrophy in Alzheimer's disease (AD). Diminishing tau aggregation is a promising strategy in the search for efficacious AD therapeutics. Previously, our laboratory designed a six-residue, nonnatural amino acid inhibitor D-TLKIVW peptide (6-DP), which can prevent tau aggregation in vitro. However, it cannot block cell-to-cell transmission of tau aggregation. Here, we find D-TLKIVWC (7-DP), a d-cysteine extension of 6-DP, not only prevents tau aggregation but also fragments tau fibrils extracted from AD brains to neutralize their seeding ability and protect neuronal cells from tau-induced toxicity. To facilitate the transport of 7-DP across the blood-brain barrier, we conjugated it to magnetic nanoparticles (MNPs). The MNPs-DP complex retains the inhibition and fragmentation properties of 7-DP alone. Ten weeks of MNPs-DP treatment appear to reverse neurological deficits in the PS19 mouse model of AD. This work offers a direction for development of therapies to target tau fibrils.


Asunto(s)
Enfermedad de Alzheimer , Modelos Animales de Enfermedad , Nanopartículas de Magnetita , Proteínas tau , Animales , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/patología , Proteínas tau/metabolismo , Proteínas tau/química , Ratones , Humanos , Nanopartículas de Magnetita/química , Amiloide/metabolismo , Amiloide/química , Ratones Transgénicos , Conducta Animal/efectos de los fármacos , Péptidos/química , Péptidos/farmacología , Agregación Patológica de Proteínas/metabolismo , Encéfalo/metabolismo , Encéfalo/patología , Encéfalo/efectos de los fármacos
2.
Proc Natl Acad Sci U S A ; 120(41): e2300258120, 2023 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-37801475

RESUMEN

Despite much effort, antibody therapies for Alzheimer's disease (AD) have shown limited efficacy. Challenges to the rational design of effective antibodies include the difficulty of achieving specific affinity to critical targets, poor expression, and antibody aggregation caused by buried charges and unstructured loops. To overcome these challenges, we grafted previously determined sequences of fibril-capping amyloid inhibitors onto a camel heavy chain antibody scaffold. These sequences were designed to cap fibrils of tau, known to form the neurofibrillary tangles of AD, thereby preventing fibril elongation. The nanobodies grafted with capping inhibitors blocked tau aggregation in biosensor cells seeded with postmortem brain extracts from AD and progressive supranuclear palsy (PSP) patients. The tau capping nanobody inhibitors also blocked seeding by recombinant tau oligomers. Another challenge to the design of effective antibodies is their poor blood-brain barrier (BBB) penetration. In this study, we also designed a bispecific nanobody composed of a nanobody that targets a receptor on the BBB and a tau capping nanobody inhibitor, conjoined by a flexible linker. We provide evidence that the bispecific nanobody improved BBB penetration over the tau capping inhibitor alone after intravenous administration in mice. Our results suggest that the design of synthetic antibodies that target sequences that drive protein aggregation may be a promising approach to inhibit the prion-like seeding of tau and other proteins involved in AD and related proteinopathies.


Asunto(s)
Enfermedad de Alzheimer , Anticuerpos de Dominio Único , Parálisis Supranuclear Progresiva , Humanos , Animales , Ratones , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Proteínas tau/metabolismo , Anticuerpos de Dominio Único/farmacología , Anticuerpos de Dominio Único/metabolismo , Ovillos Neurofibrilares/metabolismo , Parálisis Supranuclear Progresiva/metabolismo , Anticuerpos/metabolismo , Encéfalo/metabolismo
3.
J Psychiatr Res ; 166: 100-114, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37757703

RESUMEN

Major depressive disorder (MDD) is the most common and widespread mental disorder. Selective serotonin reuptake inhibitors (SSRIs) are the first-line treatment for MDD. The relation between the inhibition of serotonin reuptake in the central nervous system and remission from MDD remains controversial, as reuptake inhibition occurs rapidly, but remission from MDD takes weeks to months. Myelination-related deficits and white matter abnormalities were shown to be involved in psychiatric disorders such as MDD. This may explain the delay in remission following SSRI administration. The raphe nuclei (RN), located in the brain stem, consist of clusters of serotonergic (5-HT) neurons that project to almost all regions of the brain. Thus, the RN are an intriguing area for research of the potential effect of SSRI on myelination, and their involvement in MDD. MicroRNAs (miRNAs) regulate many biological features that might be altered by antidepressants. Two cohorts of chronic unpredictable stress (CUS) mouse model for depression underwent behavioral tests for evaluating stress, anxiety, and depression levels. Following application of the CUS protocol and treatment with the SSRI, citalopram, 48 mice of the second cohort were tested via magnetic resonance imaging and diffusion tensor imaging for differences in brain white matter tracts. RN and superior colliculus were excised from both cohorts and measured for changes in miRNAs, mRNA, and protein levels of candidate genes. Using MRI-DTI scans we found lower fractional anisotropy and axial diffusivity in brains of stressed mice. Moreover, both miR-30b-5p and miR-101a-3p were found to be downregulated in the RN following CUS, and upregulated following CUS and citalopram treatment. The direct binding of these miRNAs to Qki, and the subsequent effects on mRNA and protein levels of myelin basic protein (Mbp), indicated involvement of these miRNAs in myelination ultrastructure processes in the RN, in response to CUS followed by SSRI treatment. We suggest that SSRIs are implicated in repairing myelin deficits resulting from chronic stress that leads to depression.

4.
Nat Commun ; 14(1): 2379, 2023 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-37185252

RESUMEN

The self-assembly of the Nucleocapsid protein (NCAP) of SARS-CoV-2 is crucial for its function. Computational analysis of the amino acid sequence of NCAP reveals low-complexity domains (LCDs) akin to LCDs in other proteins known to self-assemble as phase separation droplets and amyloid fibrils. Previous reports have described NCAP's propensity to phase-separate. Here we show that the central LCD of NCAP is capable of both, phase separation and amyloid formation. Within this central LCD we identified three adhesive segments and determined the atomic structure of the fibrils formed by each. Those structures guided the design of G12, a peptide that interferes with the self-assembly of NCAP and demonstrates antiviral activity in SARS-CoV-2 infected cells. Our work, therefore, demonstrates the amyloid form of the central LCD of NCAP and suggests that amyloidogenic segments of NCAP could be targeted for drug development.


Asunto(s)
Amiloide , COVID-19 , Proteínas de la Nucleocápside de Coronavirus , Humanos , Amiloide/metabolismo , Proteínas Amiloidogénicas , Proteínas de la Nucleocápside , Péptidos/química , Dominios Proteicos , SARS-CoV-2/metabolismo
5.
Proc Natl Acad Sci U S A ; 120(7): e2217835120, 2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-36757890

RESUMEN

The amyloid aggregation of alpha-synuclein within the brain is associated with the pathogenesis of Parkinson's disease (PD) and other related synucleinopathies, including multiple system atrophy (MSA). Alpha-synuclein aggregates are a major therapeutic target for treatment of these diseases. We identify two small molecules capable of disassembling preformed alpha-synuclein fibrils. The compounds, termed CNS-11 and CNS-11g, disaggregate recombinant alpha-synuclein fibrils in vitro, prevent the intracellular seeded aggregation of alpha-synuclein fibrils, and mitigate alpha-synuclein fibril cytotoxicity in neuronal cells. Furthermore, we demonstrate that both compounds disassemble fibrils extracted from MSA patient brains and prevent their intracellular seeding. They also reduce in vivo alpha-synuclein aggregates in C. elegans. Both compounds also penetrate brain tissue in mice. A molecular dynamics-based computational model suggests the compounds may exert their disaggregating effects on the N terminus of the fibril core. These compounds appear to be promising therapeutic leads for targeting alpha-synuclein for the treatment of synucleinopathies.


Asunto(s)
Atrofia de Múltiples Sistemas , Enfermedad de Parkinson , Sinucleinopatías , Ratones , Animales , alfa-Sinucleína/metabolismo , Sinucleinopatías/patología , Caenorhabditis elegans/metabolismo , Enfermedad de Parkinson/patología , Atrofia de Múltiples Sistemas/patología , Encéfalo/metabolismo , Amiloide/metabolismo
6.
Nat Commun ; 13(1): 5451, 2022 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-36114178

RESUMEN

Alzheimer's disease (AD) is the consequence of neuronal death and brain atrophy associated with the aggregation of protein tau into fibrils. Thus disaggregation of tau fibrils could be a therapeutic approach to AD. The small molecule EGCG, abundant in green tea, has long been known to disaggregate tau and other amyloid fibrils, but EGCG has poor drug-like properties, failing to fully penetrate the brain. Here we have cryogenically trapped an intermediate of brain-extracted tau fibrils on the kinetic pathway to EGCG-induced disaggregation and have determined its cryoEM structure. The structure reveals that EGCG molecules stack in polar clefts between the paired helical protofilaments that pathologically define AD. Treating the EGCG binding position as a pharmacophore, we computationally screened thousands of drug-like compounds for compatibility for the pharmacophore, discovering several that experimentally disaggregate brain-derived tau fibrils in vitro. This work suggests the potential of structure-based, small-molecule drug discovery for amyloid diseases.


Asunto(s)
Enfermedad de Alzheimer , Amiloidosis , Proteínas tau , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Amiloide/química , Amiloide/efectos de los fármacos , Catequina/análogos & derivados , Catequina/química , Catequina/farmacología , Microscopía por Crioelectrón , Evaluación Preclínica de Medicamentos/métodos , Humanos , Té/química , Proteínas tau/química , Proteínas tau/efectos de los fármacos , Proteínas tau/metabolismo
7.
Proc Natl Acad Sci U S A ; 119(34): e2206240119, 2022 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-35969734

RESUMEN

Neurodegenerative diseases are characterized by the pathologic accumulation of aggregated proteins. Known as amyloid, these fibrillar aggregates include proteins such as tau and amyloid-ß (Aß) in Alzheimer's disease (AD) and alpha-synuclein (αSyn) in Parkinson's disease (PD). The development and spread of amyloid fibrils within the brain correlates with disease onset and progression, and inhibiting amyloid formation is a possible route toward therapeutic development. Recent advances have enabled the determination of amyloid fibril structures to atomic-level resolution, improving the possibility of structure-based inhibitor design. In this work, we use these amyloid structures to design inhibitors that bind to the ends of fibrils, "capping" them so as to prevent further growth. Using de novo protein design, we develop a library of miniprotein inhibitors of 35 to 48 residues that target the amyloid structures of tau, Aß, and αSyn. Biophysical characterization of top in silico designed inhibitors shows they form stable folds, have no sequence similarity to naturally occurring proteins, and specifically prevent the aggregation of their targeted amyloid-prone proteins in vitro. The inhibitors also prevent the seeded aggregation and toxicity of fibrils in cells. In vivo evaluation reveals their ability to reduce aggregation and rescue motor deficits in Caenorhabditis elegans models of PD and AD.


Asunto(s)
Péptidos beta-Amiloides/antagonistas & inhibidores , Agregación Patológica de Proteínas/tratamiento farmacológico , alfa-Sinucleína/antagonistas & inhibidores , Proteínas tau/antagonistas & inhibidores , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Amiloide/química , Péptidos beta-Amiloides/metabolismo , Amiloidosis , Humanos , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/metabolismo , Agregación Patológica de Proteínas/metabolismo , alfa-Sinucleína/metabolismo , Proteínas tau/química
8.
Nat Struct Mol Biol ; 29(6): 529-536, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35637421

RESUMEN

Proteins including FUS, hnRNPA2, and TDP-43 reversibly aggregate into amyloid-like fibrils through interactions of their low-complexity domains (LCDs). Mutations in LCDs can promote irreversible amyloid aggregation and disease. We introduce a computational approach to identify mutations in LCDs of disease-associated proteins predicted to increase propensity for amyloid aggregation. We identify several disease-related mutations in the intermediate filament protein keratin-8 (KRT8). Atomic structures of wild-type and mutant KRT8 segments confirm the transition to a pleated strand capable of amyloid formation. Biochemical analysis reveals KRT8 forms amyloid aggregates, and the identified mutations promote aggregation. Aggregated KRT8 is found in Mallory-Denk bodies, observed in hepatocytes of livers with alcoholic steatohepatitis (ASH). We demonstrate that ethanol promotes KRT8 aggregation, and KRT8 amyloids co-crystallize with alcohol. Lastly, KRT8 aggregation can be seeded by liver extract from people with ASH, consistent with the amyloid nature of KRT8 aggregates and the classification of ASH as an amyloid-related condition.


Asunto(s)
Amiloide , Hígado , Amiloide/genética , Amiloide/metabolismo , Proteínas Amiloidogénicas/genética , Hepatocitos/metabolismo , Humanos , Hígado/metabolismo , Mutación , Dominios Proteicos
9.
Brain Behav Immun ; 91: 519-530, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33176182

RESUMEN

Clinical studies examining the potential of anti-inflammatory agents, specifically of minocycline, as a treatment for depression has shown promising results. However, mechanistic insights into the neuroprotective and anti-inflammatory actions of minocycline need to be provided. We evaluated the effect of minocycline on chronic mild stress (CMS) induced depressive-like behavior, and behavioral assays revealed minocycline ameliorate depressive behaviors. Multiple studies suggest a role of microglia in depression, revealing that microglia activation correlates with a decrease in neurogenesis and increased depressive-like behavior. The effect of minocycline on microglia activation in different areas of the dorsal or ventral hippocampus in stressed mice was examined by immunohistochemistry. We observed the increase in the number of activated microglia expressing CD68 after exposure to three weeks of chronic stress, whereas no changes in total microglia number were observed. These changes were observed throughout the DG, CA1 and CA2 regions in dorsal hippocampus but restricted to the DG of the ventral hippocampus. In vitro experiments including western blotting and phagocytosis assay were used to investigate the effect of minocycline on microglia activation. Activation of primary microglia by LPS in vitro causes and ERK1/2 activation, enhancement of iNOS expression and phagocytic activity, and alterations in cellular morphology that are reversed by minocycline exposure, suggesting that minocycline directly acts on microglia to reduce phagocytic potential. Our results suggest the most probable mechanism by which minocycline reverses the pathogenic phagocytic potential of neurotoxic M1 microglia, and reduces the negative phenotypes associated with reduced neurogenesis caused by exposure to chronic stress.


Asunto(s)
Microglía , Minociclina , Animales , Depresión/tratamiento farmacológico , Hipocampo , Ratones , Minociclina/farmacología , Neurogénesis , Fagocitosis
10.
J Aging Phys Act ; 28(6): 828-835, 2020 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-32470918

RESUMEN

Outdoor fitness equipment (OFE) is installed in parks to promote health, particularly among seniors. However, no quantitative study has investigated its effectiveness. Therefore, this study aimed to examine the effectiveness of 12 weeks of OFE training on functional fitness in seniors. Forty-two active seniors were recruited and randomly assigned into OFE and control groups. The OFE group underwent 12 weeks of training using popular OFE for cardiorespiratory function, flexibility, and strength, whereas participants in the control group were asked to maintain their previous lifestyles. The senior fitness test was assessed before and after the 12-week period. Unexpectedly, the results showed no significant improvement within or between the groups after the 12-week training in all parameters (p > .05). In conclusion, the 12-week OFE training failed to enhance functional fitness among active seniors. Potential reasons for the limited training effects might be lack of resistance components and diversity of the OFE design and installation.

11.
Front Neurosci ; 13: 70, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30787865

RESUMEN

Human studies first identified genetic and expression interactions between integrin ß3 and serotonin (5-HT) transporter (SERT) genes. This association has been further strengthened by our discovery that integrin ß3-containing receptors (αvß3) physically interact with, and thereby define, a subpopulation of SERTs that may represent the main target of selective serotonin reuptake inhibitors (SSRIs). In this study, we examine how integrin αvß3 function influences the behavioral response to the highly SSRI citalopram in the tail suspension test. Mice bearing a conditional deletion of the integrin ß3 gene in neurons, or those expressing a constitutively active αvß3 receptor, have decreased sensitivity to citalopram, when compared to wild-type littermates. To identify potential signaling pathways downstream of integrin αvß3 that could be altered in these mouse lines, and consequently influence citalopram response in vivo, we performed antibody array analyses of midbrain synaptosomes isolated from mice bearing genetically altered integrin ß3. We then pharmacologically targeted focal adhesion (FAK) and extracellular-signal-regulated (ERK) kinases and determined that FAK and ERK activity are critical for the actions of citalopram. Taken together, our studies have revealed a complex relationship between integrin αvß3 function, SERT-dependent 5-HT uptake, and the effective dose of citalopram in the TST, thus implicating a role for integrin signaling pathways in the behavioral response to SSRIs.

12.
Chem Res Toxicol ; 31(9): 924-935, 2018 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-30169026

RESUMEN

The most common lesion in DNA occurring due to clinical treatment with Temozolomide or cellular exposures to other methylating agents is 7-methylguanine (N7-Me-dG). It can undergo a secondary reaction to form N6-(2-deoxy-d-erythro-pentofuranosyl)-2,6-diamino-3,4-dihydro-4-oxo-5- N-methylformamidopyrimidine (MeFapy-dG). MeFapy-dG undergoes epimerization in DNA to produce either α or ß deoxyribose anomers. Additionally, conformational rotation around the formyl bond, C5- N5 bond, and glycosidic bond may occur. To characterize and quantitate the mixture of these isomers in DNA, a 13C-MeFapy-dG lesion, in which the CH3 group of the MeFapy-dG was isotopically labeled, was incorporated into the trimer 5'-TXT-3' and the dodecamer 5'-CATXATGACGCT-3' (X = 13C-MeFapy-dG). NMR spectroscopy of both the trimer and dodecamer revealed that the MeFapy-dG lesion exists in single strand DNA as ten configurationally and conformationally discrete species, eight of which may be unequivocally assigned. In the duplex dodecamer, the MeFapy-dG lesion exists as six configurationally and conformationally discrete species. Analyses of NMR data in the single strand trimer confirm that for each deoxyribose anomer, atropisomerism occurs around the C5- N5 bond to produce R a and S a atropisomers. Each atropisomer exhibits geometrical isomerism about the formyl bond yielding E and Z conformations. 1H NMR experiments allow the relative abundances of the species to be determined. For the single strand trimer, the α and ß anomers exist in a 3:7 ratio, favoring the ß anomer. For the ß anomer, with respect to the C5- N5 bond, the R a and S a atropisomers are equally populated. However, the Z geometrical isomer of the formyl moiety is preferred. For the α anomer, the E- S a isomer is present at 12%, whereas all other isomers are present at 5-7%. DNA processing enzymes may differentially recognize different isomers of the MeFapy-dG lesion. Moreover, DNA sequence-specific differences in the populations of configurational and conformational species may modulate biological responses to the MeFapy-dG lesion.


Asunto(s)
Aductos de ADN/toxicidad , ADN/efectos de los fármacos , Espectroscopía de Resonancia Magnética con Carbono-13/métodos , Cromatografía Líquida de Alta Presión/métodos , ADN/química , Daño del ADN , Reparación del ADN , Replicación del ADN , Electroforesis Capilar/métodos , Isomerismo , Conformación de Ácido Nucleico , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos
13.
Aging Cell ; 17(1)2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29045001

RESUMEN

Inflammaging plays an important role in most age-related diseases. However, the mechanism of inflammaging is largely unknown, and therapeutic control of inflammaging is challenging. Human alpha-1 antitrypsin (hAAT) has immune-regulatory, anti-inflammatory, and cytoprotective properties as demonstrated in several disease models including type 1 diabetes, arthritis, lupus, osteoporosis, and stroke. To test the potential anti-inflammaging effect of hAAT, we generated transgenic Drosophila lines expressing hAAT. Surprisingly, the lifespan of hAAT-expressing lines was significantly longer than that of genetically matched controls. To understand the mechanism underlying the anti-aging effect of hAAT, we monitored the expression of aging-associated genes and found that aging-induced expressions of Relish (NF-ĸB orthologue) and Diptericin were significantly lower in hAAT lines than in control lines. RNA-seq analysis revealed that innate immunity genes regulated by NF-kB were significantly and specifically inhibited in hAAT transgenic Drosophila lines. To confirm this anti-inflammaging effect in human cells, we treated X-ray-induced senescence cells with hAAT and showed that hAAT treatment significantly decreased the expression and maturation of IL-6 and IL-8, two major factors of senescence-associated secretory phenotype. Consistent with results from Drosophila,RNA-seq analysis also showed that hAAT treatment significantly inhibited inflammation related genes and pathways. Together, our results demonstrated that hAAT significantly inhibited inflammaging in both Drosophila and human cell models. As hAAT is a FDA-approved drug with a confirmed safety profile, this novel therapeutic potential may make hAAT a promising candidate to combat aging and aging-related diseases.


Asunto(s)
Envejecimiento/fisiología , Inflamación/tratamiento farmacológico , Osteoporosis/tratamiento farmacológico , alfa 1-Antitripsina/farmacología , Animales , Drosophila , Terapia Genética/métodos , Longevidad/efectos de los fármacos
14.
J Neurosci ; 37(46): 11271-11284, 2017 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-29038237

RESUMEN

Engagement of integrins by the extracellular matrix initiates signaling cascades that drive a variety of cellular functions, including neuronal migration and axonal pathfinding in the brain. Multiple lines of evidence link the ITGB3 gene encoding the integrin ß3 subunit with the serotonin (5-HT) system, likely via its modulation of the 5-HT transporter (SERT). The ITGB3 coding polymorphism Leu33Pro (rs5918, PlA2) produces hyperactive αvß3 receptors that influence whole-blood 5-HT levels and may influence the risk for autism spectrum disorder (ASD). Using a phenome-wide scan of psychiatric diagnoses, we found significant, male-specific associations between the Pro33 allele and attention-deficit hyperactivity disorder and ASDs. Here, we used knock-in (KI) mice expressing an Itgb3 variant that phenocopies the human Pro33 variant to elucidate the consequences of constitutively enhanced αvß3 signaling to the 5-HT system in the brain. KI mice displayed deficits in multiple behaviors, including anxiety, repetitive, and social behaviors. Anatomical studies revealed a significant decrease in 5-HT synapses in the midbrain, accompanied by decreases in SERT activity and reduced localization of SERTs to integrin adhesion complexes in synapses of KI mice. Inhibition of focal adhesion kinase (FAK) rescued SERT function in synapses of KI mice, demonstrating that constitutive active FAK signaling downstream of the Pro32Pro33 integrin αvß3 suppresses SERT activity. Our studies identify a complex regulation of 5-HT homeostasis and behaviors by integrin αvß3, revealing an important role for integrins in modulating risk for neuropsychiatric disorders.SIGNIFICANCE STATEMENT The integrin ß3 Leu33Pro coding polymorphism has been associated with autism spectrum disorders (ASDs) within a subgroup of patients with elevated blood 5-HT levels, linking integrin ß3, 5-HT, and ASD risk. We capitalized on these interactions to demonstrate that the Pro33 coding variation in the murine integrin ß3 recapitulates the sex-dependent neurochemical and behavioral attributes of ASD. Using state-of-the-art techniques, we show that presynaptic 5-HT function is altered in these mice, and that the localization of 5-HT transporters to specific compartments within the synapse, disrupted by the integrin ß3 Pro33 mutation, is critical for appropriate reuptake of 5-HT. Our studies provide fundamental insight into the genetic network regulating 5-HT neurotransmission in the CNS that is also associated with ASD risk.


Asunto(s)
Encéfalo/fisiología , Mutación con Ganancia de Función/genética , Variación Genética/genética , Integrina beta3/genética , Prolina/genética , Serotonina/genética , Animales , Femenino , Técnicas de Sustitución del Gen/métodos , Humanos , Integrina beta3/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Prolina/metabolismo , Unión Proteica/fisiología , Serotonina/metabolismo , Proteínas de Transporte de Serotonina en la Membrana Plasmática/genética , Proteínas de Transporte de Serotonina en la Membrana Plasmática/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...