Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Sci (Weinh) ; 10(4): e2204018, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36504449

RESUMEN

Closure of the neural tube represents a highly complex and coordinated process, the failure of which constitutes common birth defects. The serine/threonine kinase p21-activated kinase 2 (PAK2) is a critical regulator of cytoskeleton dynamics; however, its role in the neurulation and pathogenesis of neural tube defects (NTDs) remains unclear. Here, the results show that Pak2-/- mouse embryos fail to develop dorsolateral hinge points (DLHPs) and exhibit craniorachischisis, a severe phenotype of NTDs. Pak2 knockout activates BMP signaling that involves in vertebrate bone formation. Single-cell transcriptomes reveal abnormal differentiation trajectories and transcriptional events in Pak2-/- mouse embryos during neural tube development. Two nonsynonymous and one recurrent splice-site mutations in the PAK2 gene are identified in five human NTD fetuses, which exhibit attenuated PAK2 expression and upregulated BMP signaling in the brain. Mechanistically, PAK2 regulates Smad9 phosphorylation to inhibit BMP signaling and ultimately induce DLHP formation. Depletion of pak2a in zebrafish induces defects in the neural tube, which are partially rescued by the overexpression of wild-type, but not mutant PAK2. The findings demonstrate the conserved role of PAK2 in neurulation in multiple vertebrate species, highlighting the molecular pathogenesis of PAK2 mutations in NTDs.


Asunto(s)
Defectos del Tubo Neural , Tubo Neural , Animales , Ratones , Humanos , Tubo Neural/metabolismo , Tubo Neural/patología , Quinasas p21 Activadas/genética , Quinasas p21 Activadas/metabolismo , Pez Cebra/metabolismo , Transducción de Señal/genética , Defectos del Tubo Neural/genética , Defectos del Tubo Neural/metabolismo , Defectos del Tubo Neural/patología
4.
Cell Rep ; 40(9): 111289, 2022 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-36044858

RESUMEN

Transcription factors with basic-helix-loop-helix (bHLH) motifs can control neural progenitor fate determination to neurons and oligodendrocytes. How bHLH transcription factors regulate astrogenesis remains largely unknown. Here, we report that NPAS3, a bHLH transcription factor, is a critical regulator of astrogenesis. Npas3 deficiency impairs cortical astrogenesis, correlating with abnormal brain development and autistic-like behaviors. Single-cell transcriptomes reveal that Npas3 knockout induces abnormal transition states in the differentiation trajectories from radial glia to astrocytes. Analysis of chromatin immunoprecipitation sequencing data in primary cortical astrocytes shows that NPAS3 binding targets are involved in functions of brain development and synapse organization. Co-culture assay further indicates that NPAS3-impaired astrogenesis induces synaptic deficits in wild-type neurons. Astrocyte-specific knockdown of NPAS3 in wild-type cortex causes synaptic and behavioral abnormalities associated with the core symptoms in autism. Together, our findings suggest that transcription factor NPAS3 regulates astrogenesis and its subsequent consequences for brain development and behavior.


Asunto(s)
Trastorno Autístico , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Animales , Astrocitos/metabolismo , Trastorno Autístico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Humanos , Ratones , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Sistema Nervioso/metabolismo , Factores de Transcripción/metabolismo
5.
Brain Behav Immun ; 102: 237-250, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35245678

RESUMEN

Recent studies have reported that complement-related proteins modulate brain development through regulating synapse processes in the cortex. CSMD3 belongs to a group of putative complement control proteins. However, its role in the central nervous system and synaptogenesis remains largely unknown. Here we report that CSMD3 deleterious mutations occur frequently in patients with neurodevelopmental disorders (NDDs). Csmd3 is predominantly expressed in cortical neurons of the developing cortex. In mice, Csmd3 disruption induced retarded development and NDD-related behaviors. Csmd3 deficiency impaired synaptogenesis and neurogenesis, allowing fewer neurons reaching the cortical plate. Csmd3 deficiency also induced perturbed functional networks in the developing cortex, involving a number of downregulated synapse-associated genes that influence early synaptic organization and upregulated genes related to immune activity. Our study provides mechanistic insights into the endogenous regulation of complement-related proteins in synaptic development and supports the pathological role of CSMD3 in NDDs.


Asunto(s)
Trastornos del Neurodesarrollo , Neurogénesis , Animales , Humanos , Ratones , Trastornos del Neurodesarrollo/genética , Trastornos del Neurodesarrollo/metabolismo , Neurogénesis/fisiología , Neuronas/metabolismo , Sinapsis/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...