Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 912: 169568, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38143001

RESUMEN

Constructed wetlands (CWs) are a cost-effective and environmentally friendly wastewater treatment technology. The influent chemical oxygen demand (COD)/nitrogen (N) ratio (CNR) plays a crucial role in microbial activity and purification performance. However, the effects of CNR changes on microbial diversity, interactions, and assembly processes in CWs are not well understood. In this study, we conducted comprehensive mechanistic experiments to investigate the response of CWs to changes in influent CNR, focusing on the effluent, rhizosphere, and substrate microbiota. Our goal is to provide new insights into CW management by integrating microbial ecology and environmental engineering perspectives. We constructed two groups of horizontal subsurface flow constructed wetlands (HFCWs) and set up three influent CNRs to analyse the microbial responses and nutrient removal. The results indicated that increasing influent CNR led to a decrease in microbial α-diversity and niche width. Genera involved in nitrogen removal and denitrification, such as Rhodobacter, Desulfovibrio, and Zoogloea, were enriched under medium/high CNR conditions, resulting in higher nitrate (NO3--N) removal (up to 99 %) than that under lower CNR conditions (<60 %). Environmental factors, including water temperature (WT), pH, and phosphorus (P), along with CNR-induced COD and NO3--N play important roles in microbial succession in HFCWs. The genus Nitrospira, which is involved in nitrification, exhibited a significant negative correlation (p < 0.05) with WT, COD, and P. Co-occurrence network analysis revealed that increasing influent CNR reduced the complexity of the network structure and increased microbial competition. Analysis using null models demonstrated that the microbial community assembly in HFCWs was primarily driven by stochastic processes under increasing influent CNR conditions. Furthermore, HFCWs with more stochastic microbial communities exhibited better denitrification performance (NO3--N removal). Overall, this study enhances our understanding of nutrient removal, microbial co-occurrence, and assembly mechanisms in CWs under varying influent CNRs.


Asunto(s)
Desnitrificación , Microbiota , Humedales , Análisis de la Demanda Biológica de Oxígeno , Nitrificación , Nitrógeno/química , Agua , Eliminación de Residuos Líquidos/métodos
2.
ACS Omega ; 6(23): 15442-15447, 2021 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-34151122

RESUMEN

Defects can affect all aspects of materials by altering their electronic structures and mediating the carrier dynamics. However, in the past decades, most research efforts were restricted to nonstoichiometric defects, while the effects of high-density defects on the carrier dynamics of semiconductors remained elusive. In this work, using transient absorption spectroscopy, we have observed for the first time a hybrid carrier relaxation dynamics with the feature of a Poisson-like retard shoulder in a time-domain profile in highly defective ZnO crystals. This novel behavior has been attributed to the spectral diffusion within continuum defect states, which is further confirmed by a proposed diffusion (in energy space) controlled carrier dynamic model. Our results thus reveal an alternative energy decay channel in highly defective crystals and may provide a new route for defect engineering.

3.
Langmuir ; 37(23): 6967-6973, 2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-34081482

RESUMEN

Polymer microfluidic technology is widely used in chemistry, biology, medicine, nanoparticles synthesis, and other fields. In this article, we introduce a novel method for the controllable flowing of dielectric fluid droplets. Under the action of corona discharge, the dielectric fluid droplet can be controllably driven to one or more conductive plate electrodes that are connected to the negative electrode on the substrate. Phenomena of polymerization, migration, and separation and merger are experimentally verified in detail, and the spreading speeds and steady-state time are discussed. The experimental results show that the proposed method is accurate and controllable.

4.
Micromachines (Basel) ; 11(2)2020 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-32050671

RESUMEN

In this paper, a phenomenon of generation and transport of droplets is proposed, which is based on the dielectric liquid electroconvection induced by corona discharge. We placed the dielectric fluid on a conductive/nonconductive substrate, and then it broke apart to become many small droplets that move along the conductive microchannel. The behaviors of dielectric droplets were experimentally observed on different conductive microchannels in details. Spreading speeds and sizes of dielectric droplets were analyzed at different driving voltages and conductive microchannels. This work highlights a simple approach to produce and manipulate dielectric droplets along microchannels.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...