Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Front Endocrinol (Lausanne) ; 15: 1383483, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38803475

RESUMEN

1,5-Anhydroglucitol (1,5-AG) is sensitive to short-term glucose fluctuations and postprandial hyperglycemia, which has great potential in the clinical application of diabetes as a nontraditional blood glucose monitoring indicator. A large number of studies have found that 1,5-AG can be used to screen for diabetes, manage diabetes, and predict the perils of diabetes complications (diabetic nephropathy, diabetic cardiovascular disease, diabetic retinopathy, diabetic pregnancy complications, diabetic peripheral neuropathy, etc.). Additionally, 1,5-AG and ß cells are also associated with each other. As a noninvasive blood glucose monitoring indicator, salivary 1,5-AG has much more benefit for clinical application; however, it cannot be ignored that its detection methods are not perfect. Thus, a considerable stack of research is still needed to establish an accurate and simple enzyme assay for the detection of salivary 1,5-AG. More clinical studies will also be required in the future to confirm the normal reference range of 1,5-AG and its role in diabetes complications to further enhance the blood glucose monitoring system for diabetes.


Asunto(s)
Desoxiglucosa , Complicaciones de la Diabetes , Humanos , Complicaciones de la Diabetes/diagnóstico , Complicaciones de la Diabetes/sangre , Complicaciones de la Diabetes/metabolismo , Glucemia/análisis , Glucemia/metabolismo , Diabetes Mellitus/sangre , Diabetes Mellitus/diagnóstico , Diabetes Mellitus/metabolismo , Automonitorización de la Glucosa Sanguínea/métodos , Biomarcadores/sangre , Biomarcadores/análisis
2.
Environ Sci Pollut Res Int ; 31(21): 31081-31096, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38625465

RESUMEN

This paper uses green innovation and environmental pollution as the mediating variables to construct a mediating effect model to investigate whether China's carbon emission trading policy can improve regional eco-efficiency by reducing regional environmental pollution and stimulating green innovation. This study is based on panel data from 30 provinces and municipalities directly under China's central government and autonomous regions from 2003 to 2019. The eco-efficiency of these provinces is measured using the super-efficiency DEA model and the difference-in-difference method (DID). The results show that (1) China's emission trading policy significantly improves regional ecological efficiency and the per capita GDP. The improvement can effectively improve regional ecological efficiency. (2) The mediating effect of green innovation and environmental pollution is significant. That is, China's carbon emission trading policy further improves regional ecological efficiency by stimulating more green innovation and reducing the synergy brought by environmental pollution. (3) There are differences in the feedback of this impact mechanism between different regions: It shows the characteristics of the western region being more significant than the eastern region. The central region has no significant effect. The research conclusion can provide a policy reference for the subsequent unified promotion of the construction of a carbon emission trading market nationwide and a theoretical basis for helping to achieve the "dual carbon" goal.


Asunto(s)
Carbono , Contaminación Ambiental , China , Política Ambiental
3.
Ecotoxicol Environ Saf ; 273: 116100, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38367607

RESUMEN

Chlorothalonil (CTL) is widely used in agricultural production and antifoulant additive globally due to its broad spectrum and non-systemic properties, resulting in its widespread existence in foods, soil and water. Extensive evidence demonstrated that exposure to CTL induced adverse effects on organisms and in particular its reproductive toxicity has been attracted public concern. However, the influences of CTL on oocyte maturation is mysterious so far. In this study, we documented the toxic effects of CTL on oocyte in vitro maturation and the related underlying mechanisms. Exposure to CTL caused continuous activation of spindle assembly checkpoints (SAC) which in turn compromised meiotic maturation in mouse oocyte, featured by the attenuation of polar body extrusion (PBE). Detection of cytoskeletal dynamics demonstrated that CTL exposure weakened the acetylation level of α-tubulin and impaired meiotic spindle apparatus, which was responsible for the aberrant state of SAC. Meanwhile, exposure to CTL damaged the function of mitochondria, inducing the decline of ATP content and the elevation of reactive oxygen species (ROS), which thereby induced early apoptosis and DNA damage in mouse oocytes. In addition, exposure to CTL caused the alteration of the level of histone H3 methylation, indicative of the harmful effects of CTL on epigenetic modifications in oocytes. Further, the CTL-induced oxidative stress activated mitogen-activated protein kinase (MAPK) pathway and injured the maturation of oocytes. In summary, exposure to CTL damaged mouse oocyte in vitro maturation via destroying spindle assembly, inducing oxidative stress and triggering MAPK pathway activation.


Asunto(s)
Técnicas de Maduración In Vitro de los Oocitos , Proteínas Quinasas Activadas por Mitógenos , Nitrilos , Animales , Ratones , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Estrés Oxidativo , Oocitos/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Apoptosis
4.
Ear Hear ; 45(2): 370-377, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37798826

RESUMEN

OBJECTIVES: Potential reverse causality and unmeasured confounding factors are common biases in most neuroimaging studies on tinnitus and central correlates. The causal association of tinnitus with neuroimaging features also remains unclear. This study aimed to investigate the causal relationship of tinnitus with neuroplastic alterations using Mendelian randomization. DESIGN: Summary-level data from a genome-wide association study of tinnitus were derived from UK Biobank (n = 117,882). The genome-wide association study summary statistics for 4 global-brain tissue and 14 sub-brain gray matter volumetric traits were also obtained (n = up to 33,224). A bidirectional Mendelian randomization analysis was conducted to explore the causal relationship between tinnitus and neuroanatomical features at global-brain and sub-brain levels. RESULTS: Genetic susceptibility to tinnitus was causally associated with increased white matter volume (odds ratio [OR] = 2.361, 95% confidence interval [CI], 1.033 to 5.393) and total brain volume (OR = 2.391, 95% CI, 1.047 to 5.463) but inversely associated with cerebrospinal fluid volume (OR = 0.362, 95% CI, 0.158 to 0.826). A smaller gray matter volume in the left Heschl's gyrus and right insular cortex and larger gray matter volume in the posterior division of the left parahippocampal gyrus may lead to an increased risk for tinnitus (OR = 0.978, 95% CI, 0.961 to 0.996; OR = 0.987, 95% CI, 0.976 to 0.998; and OR = 1.015, 95% CI, 1.001 to 1.028, respectively). CONCLUSIONS: Genetic susceptibility to tinnitus was causally associated with increased white matter volume and total brain volume. Volume alteration in several cortical regions may indicate a higher tinnitus risk, and further research is recommended for causality inference at the level of sub-brain regions. Our findings provide genetic evidence for elucidating the underlying pathophysiological mechanisms of tinnitus-related neuroanatomical abnormalities.


Asunto(s)
Estudio de Asociación del Genoma Completo , Acúfeno , Humanos , Análisis de la Aleatorización Mendeliana , Acúfeno/genética , Predisposición Genética a la Enfermedad , Neuroimagen
5.
J Infect Public Health ; 17(1): 137-142, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38000314

RESUMEN

BACKGROUND: Drug-resistant tuberculosis (TB), especially multidrug-resistant tuberculosis (MDR-TB), constitutes a major obstacle to fulfill end TB strategy globally. Although fluoroquinolones (FQs), linezolid (LZD) and bedaquiline (BDQ) were classified as Group A drugs for MDR-TB treatment, our knowledge of the prevalence of TB which were resistant to Group A drugs in China is quite limited. METHODS: In this study, we conducted a prospective multicenter surveillance study in China to determine the proportion of TB patients that were resistant to Group A drugs. A total of 1877 TB patients were enrolled from 2022 at four TB specialized hospitals. The drug susceptibility of isolated strains was conducted using the MGIT 960 system and the molecular mechanisms conferring drug resistance were investigated by Sanger sequencing. RESULTS: 12.9% of isolates were resistant to levofloxacin (LFX), 13.2% were resistant to moxifloxacin (MOX), 0.2% were resistant to bedaquiline (BDQ), and 0.8% were resistant to linezolid (LZD). Totally, 14.0% and 0.4% were classified as multidrug resistant- (MDR-) and extensively drug resistant- (XDR-) TB. The drug resistance was more common in retreated TB cases compared to new cases. In addition, 70.0% of fluoroquinolone (FQ)-resistant isolates harbored mutations in the gyrA and gyrB gene. By contrast, the common drug-resistant mutations were only found in 50% BDQ-resistant and 20% LZD-resistant isolates. CONCLUSIONS: Our data demonstrate that approximate half of MDR -TB patients are resistant to fluoroquinolones, with extremely low prevalence of initial BDQ and LZD resistance. Findings from this study provide important implications for the current management of MDR-TB patients.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis Resistente a Múltiples Medicamentos , Humanos , Antituberculosos/farmacología , Antituberculosos/uso terapéutico , Linezolid/farmacología , Linezolid/uso terapéutico , Estudios Prospectivos , Farmacorresistencia Bacteriana Múltiple/genética , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico , Tuberculosis Resistente a Múltiples Medicamentos/epidemiología , Tuberculosis Resistente a Múltiples Medicamentos/microbiología , Fluoroquinolonas/farmacología , Fluoroquinolonas/uso terapéutico , China/epidemiología , Pruebas de Sensibilidad Microbiana
6.
Infect Drug Resist ; 16: 6893-6904, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37920476

RESUMEN

Background: Sputum culture result at the sixth month is essential for predicting therapeutic response to longer multidrug-resistant tuberculosis (MDR-TB) regimens. This study aimed to construct a predictive model using cavity-based radiomics to predict sputum status at the sixth month for MDR-TB patients treated with longer regimens. Methods: This retrospective study recruited 315 MDR-TB patients treated with longer regimens from two centers (250 patients from center 1 and 65 patients from center 2), who were divided into persistently positive and conversion to negative sputum culture groups according to sputum results. Radiomics features were extracted based on the cavity, and a radiomics model was selected and established using a random forest classifier. The clinical characteristics and primary CT signs with significant differences were integrated to build a clinical model. A combined model was generated using the radiomics and clinical model. ROC curves, F1-score and DCA curves were used to assess the predictive performance of the models. Results: Twenty-eight radiomics features were selected to build a radiomics model for predicting the sputum status. The radiomics model achieved good performance, with AUCs of 0.892 and 0.839 in the training and testing cohort, respectively, which was similar to the performance of the combined model (0.913 and 0.815) and much higher than that of the clinical model (0.688 and 0.525) in the two cohorts. Conclusion: The cavity-based radiomics model has the potential to predict sputum culture status for MDR-TB patients receiving longer regimens, which could guide follow-up treatment effectively.

7.
bioRxiv ; 2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-38014066

RESUMEN

Alphaviruses are arthropod-borne enveloped RNA viruses that include several important human pathogens with outbreak potential. Among them, eastern equine encephalitis virus (EEEV) is the most virulent, and many survivors develop neurological sequelae, including paralysis and intellectual disability. The spike proteins of alphaviruses comprise trimers of heterodimers of their envelope glycoproteins E2 and E1 that mediate binding to cellular receptors and fusion of virus and host cell membranes during entry. We recently identified very-low density lipoprotein receptor (VLDLR) and apolipoprotein E receptor 2 (ApoER2), two closely related proteins that are expressed in the brain, as cellular receptors for EEEV and a distantly related alphavirus, Semliki forest virus (SFV) 1 . The EEEV and SFV spike glycoproteins have low sequence homology, and how they have evolved to bind the same cellular receptors is unknown. Here, we used single-particle cryo-electron microscopy (cryo-EM) to determine structures of the EEEV and SFV spike glycoproteins bound to the VLDLR ligand-binding domain. The structures reveal that EEEV and SFV use distinct surfaces to bind VLDLR; EEEV uses a cluster of basic residues on the E2 subunit of its spike glycoprotein, while SFV uses two basic residues at a remote site on its E1 glycoprotein. Our studies reveal that different alphaviruses interact with the same cellular receptor through divergent binding modes. They further suggest that the ability of LDLR-related proteins to interact with viral spike proteins through very small footprints with flexible binding modes results in a low evolutionary barrier to the acquisition of LDLR-related proteins as cellular receptors for diverse sets of viruses.

8.
J Transl Med ; 21(1): 680, 2023 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-37777783

RESUMEN

BACKGROUND: Metagenomic next-generation sequencing (mNGS) has become a powerful tool for pathogen detection, but the value of human sequencing reads generated from it is underestimated. METHODS: A total of 138 patients with pleural effusion (PE) were diagnosed with tuberculous pleurisy (TBP, N = 82), malignant pleural effusion (MPE, N = 35), or non-TB infection (N = 21), whose PE samples all underwent mNGS analysis. Clinical TB tests including culture, Acid-Fast Bacillus (AFB) test, Xpert, and T-SPOT, were performed. To utilize mNGS for MPE identification, 25 non-MPE samples (20 TBP and 5 non-TB infection) were randomly selected to set human chromosome copy number baseline and generalized linear modeling was performed using copy number variant (CNV) features of the rest 113 samples (35 MPE and 78 non-MPE). RESULTS: The performance of TB detection was compared among five methods. T-SPOT demonstrated the highest sensitivity (61% vs. culture 32%, AFB 12%, Xpert 35%, and mNGS 49%) but with the highest false-positive rate (10%) as well. In contrast, mNGS was able to detect TB-genome in nearly half (40/82) of the PE samples from TBP subgroup, with 100% specificity. To evaluate the performance of using CNV features of the human genome for MPE prediction, we performed the leave-one-out cross-validation (LOOCV) in the subcohort excluding the 25 non-MPE samples for setting copy number standards, which demonstrated 54.1% sensitivity, 80.8% specificity, 71.7% accuracy, and an AUC of 0.851. CONCLUSION: In summary, we exploited the value of human and non-human sequencing reads generated from mNGS, which showed promising ability in simultaneously detecting TBP and MPE.


Asunto(s)
Derrame Pleural Maligno , Derrame Pleural , Tuberculosis Pleural , Humanos , Tuberculosis Pleural/diagnóstico , Derrame Pleural Maligno/diagnóstico , Derrame Pleural Maligno/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Metagenómica , Sensibilidad y Especificidad
9.
Front Immunol ; 14: 1191357, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37435066

RESUMEN

Background: Tuberculosis (TB) is caused by Mycobacterium tuberculosis (Mtb) and remains a major health threat worldwide. However, a detailed understanding of the immune cells and inflammatory mediators in Mtb-infected tissues is still lacking. Tuberculous pleural effusion (TPE), which is characterized by an influx of immune cells to the pleural space, is thus a suitable platform for dissecting complex tissue responses to Mtb infection. Methods: We employed singe-cell RNA sequencing to 10 pleural fluid (PF) samples from 6 patients with TPE and 4 non-TPEs including 2 samples from patients with TSPE (transudative pleural effusion) and 2 samples with MPE (malignant pleural effusion). Result: Compared to TSPE and MPE, TPE displayed obvious difference in the abundance of major cell types (e.g., NK, CD4+T, Macrophages), which showed notable associations with disease type. Further analyses revealed that the CD4 lymphocyte population in TPE favored a Th1 and Th17 response. Tumor necrosis factors (TNF)-, and XIAP related factor 1 (XAF1)-pathways induced T cell apoptosis in patients with TPE. Immune exhaustion in NK cells was an important feature in TPE. Myeloid cells in TPE displayed stronger functional capacity for phagocytosis, antigen presentation and IFN-γ response, than TSPE and MPE. Systemic elevation of inflammatory response genes and pro-inflammatory cytokines were mainly driven by macrophages in patients with TPE. Conclusion: We provide a tissue immune landscape of PF immune cells, and revealed a distinct local immune response in TPE and non-TPE (TSPE and MPE). These findings will improve our understanding of local TB immunopathogenesis and provide potential targets for TB therapy.


Asunto(s)
Mycobacterium tuberculosis , Derrame Pleural , Tuberculosis , Humanos , Presentación de Antígeno , Cavidad Pleural
10.
PLoS Negl Trop Dis ; 17(7): e0011432, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37428800

RESUMEN

BACKGROUND: Nocardia species can cause local or disseminated infection. Prompt diagnosis and appropriate treatment of nocardiosis are required, because it can cause significant morbidity and mortality. Knowledge of local species distribution and susceptibility patterns is important to appropriate empiric therapy. However, knowledge on the epidemiology and antimicrobial susceptibility profiles of clinical Nocardia species remains limited in China. METHODS: The data of isolation of Nocardia species were collected from databases such as Pubmed, Web of Science, Embase as well as Chinese databases (CNKI, Wanfang and VIP). Meta-analysis was performed using RevMan 5.3 software. Random effect models were used and tested with Cochran's Q and I2 statistics taking into account the possibility of heterogeneity between studies. RESULTS: In total, 791 Nocardia isolates were identified to 19 species levels among all the recruited studies. The most common species were N. farcinica (29.1%, 230/791), followed by N. cyriacigeorgica (25.3%, 200/791), N. brasiliensis (11.8%, 93/791) and N. otitidiscaviarum (7.8%, 62/791). N. farcinica and N. cyriacigeorgica were widely distributed, N. brasiliensis mainly prevalent in the south, N. otitidiscaviarum mainly distributed in the eastern coastal provinces of China. Totally, 70.4% (223/317) Nocardia were cultured from respiratory tract specimens, 16.4% (52/317) from extra-pulmonary specimens, and 13.3% (42/317) from disseminated infection. The proportion of susceptible isolates as follows: linezolid 99.5% (197/198), amikacin 96.0% (190/198), trimethoprim-sulfamethoxazole 92.9% (184/198), imipenem 64.7% (128/198). Susceptibility varied by species of Nocardia. CONCLUSIONS: N. farcinica and N. cyriacigeorgica are the most frequently isolated species, which are widely distributed in China. Pulmonary nocardiosis is the most common type of infection. Trimethoprim-sulfamethoxazole can still be the preferred agent for initial Nocardia infection therapy due to the low resistance rate, linezolid and amikacin could be an alternative to treat nocardiosis or a choice in a combination regimen.


Asunto(s)
Nocardiosis , Nocardia , Humanos , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Combinación Trimetoprim y Sulfametoxazol/uso terapéutico , Linezolid/uso terapéutico , Amicacina/uso terapéutico , Pruebas de Sensibilidad Microbiana , Farmacorresistencia Bacteriana , Nocardiosis/tratamiento farmacológico , Nocardiosis/epidemiología , China/epidemiología
11.
J Infect Public Health ; 16(8): 1193-1200, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37271100

RESUMEN

BACKGROUND: In this study, we utilized whole genome sequencing (WGS) of clinical extremely drug-resistant tuberculosis (EDR-TB) strains collected during 2014-2020 in Beijing to detect clustered strains. METHODS: A retrospective cohort study was conducted by inclusion of EDR-TB patients with positive cultures in Beijing between 2014 and 2020. RESULTS: A total of 95 EDR-TB patients were included in our analysis. Up on the WGS based genotyping, 94 (94/95, 98.9%) out of 95 were identified as lineage 2 (East Asia). The pairwise genomic distance analysis identified 7 clusters, ranging in size from 2 to 5 isolates. The clustering rate of EDR-TB was 21.1%; while no patients had significantly higher odds of clustering. All isolates harbor rpoB RRDR mutations that confer RIF resistance and katG or inhA promoter mutations that confer INH resistance. Of 95 EDR-TB isolates, a total of 15 mutation types were recorded in the transcriptional regulator mmpR5. In vitro susceptibility testing results revealed that 14 (14/15, 93.3%) out of 15 mutation types were resistant to CFZ; whereas only 3 (3/15, 20.0%) showed resistance to BDQ. Interestingly, 12 isolates harbored mutations within rrl locus, whereas only mutations at positions 2294 and 2296 conferred CLA resistance. Favorable outcomes of EDR-TB patients were positively associated with more effective drugs in the regimes. CONCLUSION: WGS data demonstrate limited transmission of EDR-TB in this metropolis city. WGS-based drug susceptibility predictions will bring benefits to EDR-TB patients to formulate optimal therapeutic regimens.


Asunto(s)
Tuberculosis Extensivamente Resistente a Drogas , Mycobacterium tuberculosis , Tuberculosis Resistente a Múltiples Medicamentos , Humanos , Antituberculosos/farmacología , Antituberculosos/uso terapéutico , Tuberculosis Extensivamente Resistente a Drogas/tratamiento farmacológico , Tuberculosis Extensivamente Resistente a Drogas/epidemiología , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico , Tuberculosis Resistente a Múltiples Medicamentos/epidemiología , Tuberculosis Resistente a Múltiples Medicamentos/diagnóstico , Beijing/epidemiología , Estudios Retrospectivos , China/epidemiología , Mutación , Pruebas de Sensibilidad Microbiana , Farmacorresistencia Bacteriana Múltiple/genética
12.
J Mol Diagn ; 25(6): 342-351, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37208048

RESUMEN

This study systematically investigated the performance of MeltPro and next-generation sequencing in the diagnosis of fluoroquinolone (FQ) resistance among multidrug-resistant tuberculosis patients and explored the relationship between nucleotide alteration and the level of phenotypic susceptibility to FQs. From March 2019 to June 2020, a feasibility and validation study with both MeltPro and next-generation sequencing was performed in 126 patients with multidrug-resistant tuberculosis. Using phenotypic drug susceptibility testing as the gold standard, 95.3% (82 of 86) of ofloxacin-resistant isolates were identified correctly by MeltPro. In addition, whole-genome sequencing was able to detect 83 phenotypically ofloxacin-resistant isolates. The isolates with an individual gyrB mutation outside the quinolone resistance-determining region (QRDR) had minimum inhibitory concentrations (MICs) of ≤2 µg/mL. Despite showing low MICs close to the breakpoint for isolates carrying only gyrA_Ala90Val, the combined mutation gyrB_Asp461Asn caused the ofloxacin MIC to be eight higher than that obtained in Mycobacterium tuberculosis (MTB) isolates with the Ala90Val mutation alone (median, 32 µg/mL; P = 0.038). Heteroresistance was observed in 12 of 88 isolates harboring mutations in the QRDRs. In conclusion, our data show that MeltPro and the whole-genome sequencing assay correctly can identify FQ resistance caused by mutations in the gyrA QRDR. The combined gyrB_Asp461Asn mutation may significantly decrease in vitro FQ susceptibility of MTB isolates with low-level-resistance-associated gyrA mutations.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis Resistente a Múltiples Medicamentos , Humanos , Fluoroquinolonas/farmacología , Pruebas de Sensibilidad Microbiana , Farmacorresistencia Bacteriana/genética , Girasa de ADN/genética , Tuberculosis Resistente a Múltiples Medicamentos/diagnóstico , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico , Tuberculosis Resistente a Múltiples Medicamentos/microbiología , Ofloxacino/farmacología , Mutación , Secuenciación de Nucleótidos de Alto Rendimiento , Antituberculosos/farmacología
13.
ACS Omega ; 8(20): 18128-18139, 2023 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-37251132

RESUMEN

Doxorubicin (DOX) is a broad-spectrum chemotherapeutic drug used in clinical treatment of malignant tumors. It has a high anticancer activity but also high cardiotoxicity. The aim of this study was to explore the mechanism of Tongmai Yangxin pills (TMYXPs) in ameliorating DOX-induced cardiotoxicity through integrated metabolomics and network pharmacology. In this study, first, an ultrahigh-performance liquid chromatography-quadrupole-time-of-flight/mass spectrometry (UPLC-Q-TOF/MS) metabonomics strategy was established to obtain metabolite information and potential biomarkers were determined after data processing. Second, network pharmacological analysis was used to evaluate the active components, drug-disease targets, and key pathways of TMYXPs to alleviate DOX-induced cardiotoxicity. Targets from the network pharmacology analysis and metabolites from plasma metabolomics were jointly analyzed to select crucial metabolic pathways. Finally, the related proteins were verified by integrating the above results and the possible mechanism of TMYXPs to alleviate DOX-induced cardiotoxicity was studied. After metabolomics data processing, 17 different metabolites were screened, and it was found that TMYXPs played a role in myocardial protection mainly by affecting the tricarboxylic acid (TCA) cycle of myocardial cells. A total of 71 targets and 20 related pathways were screened out with network pharmacological analysis. Based on the combined analysis of 71 targets and different metabolites, TMYXPs probably played a role in myocardial protection through regulating upstream proteins of the insulin signaling pathway, MAPK signaling pathway, and p53 signaling pathway, as well as the regulation of metabolites related to energy metabolism. They then further affected the downstream Bax/Bcl-2-Cyt c-caspase-9 axis, inhibiting the myocardial cell apoptosis signaling pathway. The results of this study may contribute to the clinical application of TMYXPs in DOX-induced cardiotoxicity.

14.
Front Oncol ; 13: 1050337, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37035186

RESUMEN

Background: Breast cancer is a common cause of cancer-related death worldwide. Chemotherapy plays an indispensable role in the conventional treatment of breast cancer, bringing some physical burdens and discomfort on cancer patients. Consequently, more and more patients turn to seeking the help of Complementary and Alternative Medicine (CAM), mainly traditional Chinese medicine (TCM). Xiaoyao san (XYS), a classical formula, has been shown to improve symptoms of breast cancer. An increasing number of researches suggest that compared to chemotherapy alone, Chinese herbal medicine combined with chemotherapy could increase effectiveness and reduce toxicity caused by chemotherapy. Emerging experimental research continuously demonstrated some of the components in XYS could stop breast cancer tumor cells from growing. However, the efficacy and safety of modified XYS combined with chemotherapy remain to be determined. Therefore, it is essential to evaluate the comparative effectiveness and safety of modified XYS combined with chemotherapy in-depth, thus providing clinicians and policymakers with evidence-based guidance and new treatment options. Objective: To comprehensively evaluate the efficacy and safety of modified XYS in conjunction with chemotherapy in treating breast cancer by conducting a meta-analysis. Methods: 8 databases were systemically searched until April 3, 2022, including Web of Science PubMed, EMBASE, Cochrane Library, China National Knowledge Infrastructure (CNKI), Wanfang, Chinese Scientific Journals Database (VIP), and Chinese Biological Medical Database (CBM). Relevant randomized controlled trials (RCTs) comparing modified XYS in combination with chemotherapy versus chemotherapy alone were included. For the evaluation of methodological quality, Cochrane Collaboration was considered. Software Review Manager (version 5.4) was used for data analysis. Software STATA (version 15.0) was employed for sensitivity analysis and publication bias. Results: Altogether, 17 RCTs involving 1207 patients were investigated in the current review. The findings revealed that modified XYS combined with chemotherapy could lead to beneficial improvements compared to chemotherapy alone. More specifically, the combined therapy could enhance the short-term efficacy in the treatment of solid tumors (OR: 1.74; 95% CI 1.27 to 2.39; P = 0.0006; I2 = 0%); improve QOL (quality of life) (OR: 3.75; 95% CI 2.58 to 5.44; P < 0.00001; I2 = 0%); reduce clinical symptoms (OR: 3.69; 95% CI 1.43 to 9.49; P = 0.007; I2 = 53%); ease depression (MD: -12.96; 95% CI -16.09 to -9.83; P < 0.00001; I2 = 0%); increase leukocytes (OR: 0.32; 95% CI 0.20 to 0.50; P < 0.00001; I2 = 0%) and platelets (OR: 0.37; 95% CI 0.20 to 0.67; P = 0.001; I2 = 0%); reduce nausea and vomiting (OR: 0.26; 95% CI 0.15 to 0.44; P < 0. 00001; I2 = 0%); mitigate cardiotoxicity (OR: 0.16; 95% CI 0.07 to 0.36; P<0.00001; I2 = 0%); prolong survival time (OR: 2.19; 95% CI 1.03 to 4.66; P = 0.04; I2 = 0%), compared to chemotherapy alone. Unfortunately, there was no statistically significant difference in damage to the liver and kidney (OR: 0.59; 95% CI 0.29 to 1.21; P = 0.15; I2 = 0%). Conclusion: The existing evidence suggests modified XYS combined with chemotherapy leads to beneficial improvements in the management of breast cancer, which may serve as a promising therapy for breast cancer in clinical practice. Given the limited number of high quality RCTs, more rigorous, scientific, double-blinded, large-scale, multi-center clinical trials are warranted further. Systematic review registration: https://www.crd.york.ac.uk/PROSPERO/, identifier CRD42022357860.

15.
Free Radic Biol Med ; 195: 158-177, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36586451

RESUMEN

BACKGROUND AND OBJECTIVE: Imbalance of oxidative stress has been detected in a range of fibrotic diseases. Melatonin as an indoleamine hormone plays an important role in regulating the circadian rhythm of human, while in recent years, its antioxidant effect has also attracted increasing attention. This study aimed to perform a systematic review and meta-analysis to comprehensively evaluate the antioxidant effect of melatonin in animal models of fibrosis. METHODS: The PubMed, Cochrane Library, EMBASE, Web of Science, China National Knowledge Infrastructure (CNKI), Wanfang database, China Science and Technology Journal Database (VIP), and SinoMed databases were searched from inception to March 1st, 2022 to retrieve eligible studies that evaluated the effect of melatonin supplementation on the levels of malondialdehyde (MDA), lipid peroxidation (LPO), nitric oxide (NO), superoxide dismutase (SOD), glutathione (GSH), glutathione peroxidase (GPx), and catalase (CAT) in animal models of fibrosis. RESULTS: A total of 64 studies were included in this meta-analysis. The results showed that melatonin supplementation significantly reduced the levels of oxidative indicators including MDA (P < 0.00001), LPO (P < 0.00001) and NO (P < 0.0001), and elevated the levels of antioxidant indicators including GSH (P < 0.00001), GPx (P < 0.00001) and SOD (P < 0.00001) in fibrotic diseases. CONCLUSIONS: Our research findings showed that melatonin supplementation could significantly reduce the levels of oxidative indicators including MDA, LPO and NO and elevate the levels of antioxidant indicators including GSH, GPx and SOD so as to correct oxidative stress in animal models of fibrosis. However, no significant changes were observed in CAT level. More clinical studies are needed to further confirm the beneficial role of melatonin in fibrotic diseases.


Asunto(s)
Antioxidantes , Melatonina , Animales , Humanos , Antioxidantes/farmacología , Antioxidantes/metabolismo , Melatonina/farmacología , Estrés Oxidativo , Catalasa/metabolismo , Glutatión/metabolismo , Superóxido Dismutasa/metabolismo , Fibrosis , Óxido Nítrico/farmacología , Modelos Animales , Glutatión Peroxidasa/metabolismo , Malondialdehído/farmacología
16.
Front Immunol ; 13: 904308, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36119060

RESUMEN

False negative interferon-γ release assay (IGRA) results constitute the major dilemma for the diagnosis of tuberculosis (TB) infections. Herein, we conducted a cohort study to compare the host immunological response to TB-specific antigens between active TB patients with positive and negative IGRA results and control groups. A total of 274 laboratory-confirmed TB patients were included in our analysis, consisting of 221 were IGRA positive and 53 were IGRA negative. Patients with the elderly were identified as an independent risk factor for negative IGRA results. In addition, the elevated level of IL-4 and the decreased levels of IFN-γ, IL-2, IL-6, IL-1ß, and IL-12 in IGRA negative TB relative to IGRA positive TB group, demonstrating a significant difference in Th1/Th2 paradigm between two groups. The IFN-γ&IL-2 based assay could correctly identify 247 out of 307 MTB-infected individuals [271 TB patients and 36 individuals with latent TB infection (LTBI)], demonstrating a sensitivity of 80.5%. Then the IFN-γ and IL-4 were applied to distinguish healthy control and IGRA-negative group. When using the stepwise algorithm, the sensitivity for detecting Mycobacterium tuberculosis (MTB) infections was significantly increased from 80.5% to 89.6%. Additionally, patients with negative IGRA results had a conversion to culture-negative status longer than those with positive IGRA results. In conclusion, a stepwise algorithm outperforms IGRA assays to accurately identify MTB infections by the combination IFN-γ, IL-2, and IL-4. Further study is needed to evaluate the accuracy of our diagnostic algorithm in the LTBI population.


Asunto(s)
Tuberculosis Latente , Tuberculosis Ganglionar , Anciano , Estudios de Cohortes , Humanos , Ensayos de Liberación de Interferón gamma/métodos , Interleucina-12 , Interleucina-2 , Interleucina-4 , Interleucina-6 , Tuberculosis Latente/diagnóstico
17.
Front Public Health ; 10: 923968, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35923959

RESUMEN

Background: Pulmonary non-tuberculous mycobacteria (NTM) infection has become a public health concern in China and around the world. The objective of this study was to describe the longitudinal changes in the frequency and diversity of NTM in northern China. Methods: We retrospectively analyzed data on mycobacterium species in Beijing Chest Hospital from January 2014 to December 2021. The isolates were identified to species level by targeted DNA sequencing. Results: After excluding duplicates, 1,755 NTM strains were analyzed, which were from 27 provinces in China over 8 years. Among all mycobacteria, the proportion of NTM increased each year, from 4.24% in 2014 to 12.68% in 2021. Overall, 39 different NTM species were identified, including 23 slow growing mycobacteria (SGM) and 16 rapid growing mycobacteria (RGM). The most common species were M. intracellulare (51.62%), M. abscessus (22.22%), M. kansasii (8.32%), M. avium (7.75%) and M. fortuitum (2.05%). The number of NTM species identified also increased each year from 9 in 2014 to 26 in 2021. Most species showed stable isolation rates over the years; however, the proportion of M. avium increased from 3.85 to 10.42% during the study period. Besides, 81 non-mycobacteria strains, including Gordonia (21 isolates), Nocardia (19 isolates) and Tsukamurella (17 isolates), etc., were also discovered. Conclusion: The proportion of NTM and species diversity increased considerably in northern China from 2014 to 2021. M. intracellulare was the most common NTM isolated among respiratory specimens, followed by M. abscessus and M. kansasii. Rare NTM species and non-mycobacteria pathogens also need attention.


Asunto(s)
Infecciones por Mycobacterium no Tuberculosas , Micobacterias no Tuberculosas , China/epidemiología , Humanos , Infecciones por Mycobacterium no Tuberculosas/epidemiología , Infecciones por Mycobacterium no Tuberculosas/microbiología , Micobacterias no Tuberculosas/genética , Salud Pública , Estudios Retrospectivos
18.
J Oncol ; 2022: 4761403, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35799608

RESUMEN

Gastric cancer (GC) is usually diagnosed in an advanced stage at the first visit due to the atypical clinical symptoms. The low surgical resection rate and chemotherapy sensitivity result in dismal survival. Therefore, it is urgent to develop novel biomarkers with high sensitivity and specificity to accurately assess the prognosis of GC patients. In the present study, 3385 differentially expressed genes (DEGs) were obtained from the single-cell RNA sequencing data of GC specimens. Using the unsupervised dimensionality reduction, we further found 3 subsets of cells including gastric cells, plasmacytoid dendritic cells, and memory T cells. Based on the cell clustering, we explored the key regulatory genes for GC progression by pseudo-time analysis and functional enrichment analysis. According to the results, the significant differentially expressed fatty acid-binding protein 1 (FABP1) verified by pseudo-time analysis was identified as the hub gene of GC progression. FABP1 was shown to be closely related to the long-term survival and the age at diagnosis of patients with GC in analysis based on the TCGA (The Cancer Genome Atlas) database. To further verify the role of FABP1 in GC, we performed immunohistochemical (IHC) analysis using the GC tissue microarray and found that the expression level of FABP1 was higher in GC tissues than in the adjacent tissues. Moreover, GC patients with higher expression of FABP1 had a worse clinical outcome. In summary, our study revealed that FABP1 is a potential effective biomarker for the prognosis of GC, and high expression of FABP1 predicts unsatisfactory survival.

19.
Ann Transl Med ; 10(10): 578, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35722424

RESUMEN

Background: Acute liver injury can occur at any stage of sepsis and is an important sign of multiple organ dysfunction syndrome (MODS). Studies have shown that agmatine (AGM) can effectively improve liver injury caused by sepsis. However, due to the numerous metabolites and metabolic pathways of AGM in the human body, its mechanism in treating septic liver injury is unclear. Methods: In this study, a liver injury model of septic Sprague-Dawley rats was established by cecal ligation and perforation (CLP). After AGM treatment, transcriptomics combined with metabolomics was employed to analyze the gene expression levels and metabolite changes. Results: The results showed that AGM decreased the expression levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), procalcitonin (PCT), and inflammatory factors [interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α) and interleukin-1ß (IL-1ß)] in the serum of septic rats. It also reduced liver inflammatory cell infiltration and abnormal lipid metabolism, and promoted the survival rate of septic rats. In addition, 17 differentially-expressed genes were identified by transcriptomics, mainly in arginine and proline metabolism, the arachidonic acid metabolism pathway, as well as the nuclear factor kappa B (NF-κB) and AMP-activated protein kinase (AMPK)-peroxisome proliferator-activated receptor α (PPARα) signal transduction pathways. Metabolomics analysis was carried out to study the potential liver metabolism spectrum changes induced by AGM treatment. The results showed significant changes in 26 metabolites in the rat liver samples, mainly involved in arginine and proline metabolism, arachidonic acid metabolism, linoleic acid metabolism, and fatty acid metabolism. Conclusions: The integrated transcriptomics and metabolomics analysis demonstrated that AGM improved septic liver injury by regulating lipid metabolism, and reduced the inflammatory reaction by affecting fatty acid metabolism, amino acid metabolism, and the arachidonic acid metabolism pathway. The integration of transcriptomics and metabolomics provides an effective means to elucidate AGM's therapeutic pathways and biomarkers.

20.
Science ; 375(6578): eabl6251, 2022 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-34855508

RESUMEN

Many studies have examined the impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants on neutralizing antibody activity after they have become dominant strains. Here, we evaluate the consequences of further viral evolution. We demonstrate mechanisms through which the SARS-CoV-2 receptor binding domain (RBD) can tolerate large numbers of simultaneous antibody escape mutations and show that pseudotypes containing up to seven mutations, as opposed to the one to three found in previously studied variants of concern, are more resistant to neutralization by therapeutic antibodies and serum from vaccine recipients. We identify an antibody that binds the RBD core to neutralize pseudotypes for all tested variants but show that the RBD can acquire an N-linked glycan to escape neutralization. Our findings portend continued emergence of escape variants as SARS-CoV-2 adapts to humans.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Evasión Inmune , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/inmunología , Enzima Convertidora de Angiotensina 2/química , Enzima Convertidora de Angiotensina 2/metabolismo , Vacuna BNT162/inmunología , Betacoronavirus/inmunología , COVID-19/inmunología , COVID-19/virología , Reacciones Cruzadas , Microscopía por Crioelectrón , Cristalografía por Rayos X , Epítopos , Evolución Molecular , Humanos , Modelos Moleculares , Mutación , Polisacáridos/análisis , Unión Proteica , Dominios Proteicos , Receptores de Coronavirus/química , Receptores de Coronavirus/metabolismo , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética , Pseudotipado Viral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...