Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Bone Joint Res ; 12(11): 677-690, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37907083

RESUMEN

Aims: Currently, the effect of drug treatment for osteoporosis is relatively poor, and the side effects are numerous and serious. Melatonin is a potential drug to improve bone mass in postmenopausal women. Unfortunately, the mechanism by which melatonin improves bone metabolism remains unclear. The aim of this study was to further investigate the potential mechanism of melatonin in the treatment of osteoporosis. Methods: The effects of melatonin on mitochondrial apoptosis protein, bmal1 gene, and related pathway proteins of RAW264.7 (mouse mononuclear macrophage leukaemia cells) were analyzed by western blot. Cell Counting Kit-8 was used to evaluate the effect of melatonin on cell viability. Flow cytometry was used to evaluate the effect of melatonin on the apoptosis of RAW264.7 cells and mitochondrial membrane potential. A reactive oxygen species (ROS) detection kit was used to evaluate the level of ROS in osteoclast precursors. We used bmal1-small interfering RNAs (siRNAs) to downregulate the Bmal1 gene. We established a postmenopausal mouse model and verified the effect of melatonin on the bone mass of postmenopausal osteoporosis in mice via micro-CT. Bmal1 lentiviral activation particles were used to establish an in vitro model of overexpression of the bmal1 gene. Results: Melatonin promoted apoptosis of RAW264.7 cells and increased the expression of BMAL1 to inhibit the activation of ROS and phosphorylation of mitogen-activated protein kinase (MAPK)-p38. Silencing the bmal1 gene weakened the above effects of melatonin. After that, we used dehydrocorydaline (DHC) to enhance the activation of MAPK-p38, and the effects of melatonin on reducing ROS levels and promoting apoptosis of RAW264.7 cells were also blocked. Then, we constructed a mouse model of postmenopausal osteoporosis and administered melatonin. The results showed that melatonin improves bone loss in ovariectomized mice. Finally, we established a model of overexpression of the bmal1 gene, and these results suggest that the bmal1 gene can regulate ROS activity and change the level of the MAPK-p38 signalling pathway. Conclusion: Our study confirmed that melatonin promotes the apoptosis of RAW264.7 cells through BMAL1/ROS/MAPK-p38, and revealed the therapeutic effect and mechanism of melatonin in postmenopausal osteoporosis. This finding enriches BMAL1 as a potential target for the treatment of osteoporosis and the pathogenesis of postmenopausal osteoporosis.

2.
FASEB J ; 37(4): e22891, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36961412

RESUMEN

Respiratory complex IV (CIV, cytochrome c oxidase) is the terminal enzyme of the mitochondrial electron transport chain. Some CIV subunits have two or more isoforms, which are ubiquitously expressed or are expressed in specific tissues like the lung, muscle, and testis. Among the tissue-specific CIV isoforms, the muscle-specific isoforms are expressed in adult cardiac and skeletal muscles. To date, the physiological and biochemical association between the muscle-specific CIV isoforms and aerobic respiration in muscles remains unclear. In this study, we profiled the CIV organization and expression pattern of muscle-specific CIV isoforms in different mouse muscle tissues. We found extensive CIV-containing supramolecular organization in murine musculature at advanced developmental stages, while a switch in the expression from ubiquitous to muscle-specific isoforms of CIV was also detected. Such a switch was confirmed during the in vitro differentiation of mouse C2C12 myoblasts. Unexpectedly, a CIV expression decrease was observed during C2C12 differentiation, which was probably due to a small increase in the expression of muscle-specific isoforms coupled with a dramatic decrease in the ubiquitous isoforms. We also found that the enzymatic activity of CIV containing the muscle-specific isoform COX6A2 was higher than that with COX6A1 in engineered HEK293T cells. Overall, our results indicate that switching the expression from ubiquitous to muscle-specific CIV isoforms is indispensable for optimized oxidative phosphorylation in mature skeletal muscles. We also note that the in vitro C2C12 differentiation model is not suitable for the study of muscular aerobic respiration due to insufficient expression of muscle-specific CIV isoforms.


Asunto(s)
Complejo IV de Transporte de Electrones , Músculo Esquelético , Masculino , Ratones , Animales , Humanos , Complejo IV de Transporte de Electrones/metabolismo , Células HEK293 , Músculo Esquelético/metabolismo , Mitocondrias/metabolismo , Isoformas de Proteínas/metabolismo
3.
Anal Chem ; 94(36): 12391-12397, 2022 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-36048720

RESUMEN

Design of chemical probes with high specificity and responses are particularly intriguing. In this work, a fluorescent probe (M-OH-SO3) with dual-channel spectral responses toward human serum albumin (HSA) is presented. By employing dinitrobenzenesulfonate as a recognition site as well as a fluorescence quencher, probe M-OH-SO3 displayed weak fluorescence, which, nevertheless, exhibits extensive yellow (575 nm) and red (660 nm) fluorescence emissions toward HSA under excitations at 400 and 500 nm, respectively. Interestingly, M-OH-SO3 displayed the best performance toward HSA with distinctly higher selectivity than that of its counterparts M-SO3, M-H-SO3, and M-F-SO3, which were prepared simply by modulating the functional group at the ortho position of the dicyanoisophorone core. Molecular docking results revealed that M-OH-SO3 possesses the lowest binding energy among the tested derivatives and accordingly the strongest binding affinity. Probe M-OH-SO3 showed a good linear relationship toward HSA in a range of 0.5-18 µM with a limit of detection of 35 nM. Cell imaging results demonstrated that probe M-OH-SO3 could visualize the variation HSA levels in hepatocarcinoma cells. In addition, probe M-OH-SO3 could also be employed for the recognition of glutathione through the cleavage of the dinitrobenzenesulfonate group along with an enhancement of emission at 575 nm. The site-dependent properties inspired a novel paradigm for design of fluorescent probes with optimized selectivity and responses.


Asunto(s)
Colorantes Fluorescentes , Albúmina Sérica Humana , Colorantes Fluorescentes/química , Glutatión , Humanos , Simulación del Acoplamiento Molecular , Albúmina Sérica Humana/química , Espectrometría de Fluorescencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...