Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Omega ; 9(22): 23984-23997, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38854515

RESUMEN

The causative pathogen of COVID-19, severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2), utilizes the receptor-binding domain (RBD) of the spike protein to bind to human receptor angiotensin-converting enzyme 2 (ACE2). Further cleavage of spike by human proteases furin, TMPRSS2, and/or cathepsin L facilitates viral entry into the host cells for replication, where the maturation of polyproteins by 3C-like protease (3CLpro) and papain-like protease (PLpro) yields functional nonstructural proteins (NSPs) such as RNA-dependent RNA polymerase (RdRp) to synthesize mRNA of structural proteins. By testing the tea polyphenol-related natural products through various assays, we found that the active antivirals prevented SARS-CoV-2 entry by blocking the RBD/ACE2 interaction and inhibiting the relevant human proteases, although some also inhibited the viral enzymes essential for replication. Due to their multitargeting properties, these compounds were often misinterpreted for their antiviral mechanisms. In this study, we provide a systematic protocol to check and clarify their anti-SARS-CoV-2 mechanisms, which should be applicable for all of the antivirals.

2.
Antiviral Res ; 219: 105735, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37858764

RESUMEN

A class of 1-(4-(arylethylenylcarbonyl)phenyl)-4-carboxy-2-pyrrolidinones were designed and synthesized via Michael addition, cyclization, aldol condensation, and deprotonation to inhibit the human transmembrane protease serine 2 (TMPRSS2) and Furin, which are involved in priming the SARS-CoV-2 Spike for virus entry. The most potent inhibitor 2f (81) was found to efficiently inhibit the replication of various SARS-CoV-2 delta and omicron variants in VeroE6 and Calu-3 cells, with EC50 range of 0.001-0.026 µM by pre-incubation with the virus to avoid the virus entry. The more potent antiviral activities than the proteases inhibitory activities led to discovery that the synthesized compounds also inhibited Spike's receptor binding domain (RBD):angiotensin converting enzyme 2 (ACE2) interaction as a main target, and their antiviral activities were enhanced by inhibiting TMPRSS2 and/or Furin. To further confirm the blocking effect of 2f (81) on virus entry, SARS-CoV-2 Spike pseudovirus was used in the entry assay and the results showed that the compound inhibited the pseudovirus entry in a ACE2-dependent pathway, via mainly inhibiting RBD:ACE2 interaction and TMPRSS2 activity in Calu-3 cells. Finally, in the in vivo animal model of SARS-CoV-2 infection, the oral administration of 25 mg/kg 2f (81) in hamsters resulted in reduced bodyweight loss and 5-fold lower viral RNA levels in nasal turbinate three days post-infection. Our findings demonstrated the potential of the lead compound for further preclinical investigation as a potential treatment for SARS-CoV-2.


Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , Humanos , Furina/farmacología , Enzima Convertidora de Angiotensina 2/química , Pirrolidinonas/farmacología , Antivirales/farmacología , Glicoproteína de la Espiga del Coronavirus/metabolismo , Internalización del Virus
3.
Future Oncol ; 19(2): 123-135, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36877099

RESUMEN

Crizotinib and entrectinib have been approved to treat ROS1 fusion-positive (ROS1+) non-small-cell lung cancer. However, unmet needs remain, including treatment of patients with resistance mutations, efficacy in brain metastasis and avoidance of neurological side effects. Taletrectinib was designed to: improve efficacy; overcome resistance to first-generation ROS1 inhibitors; and address brain metastasis while conferring fewer neurological adverse events. All of these features are demonstrated and supported by the interim data from the regional phase II TRUST-I clinical study. Here we describe the rationale and design of TRUST-II, a global phase II study of taletrectinib in patients with locally advanced/metastatic ROS1+ non-small-cell lung cancer and other ROS1+ solid tumors. The primary end point is confirmed objective response rate. Secondary end points include duration of response, progression-free survival, overall survival and safety. This trial is enrolling patients in North America, Europe and Asia.


The targeted therapies crizotinib and entrectinib are the first options available to treat a type of lung cancer called ROS1 fusion-positive non-small-cell lung cancer (ROS1+ NSCLC). However, not all patients with ROS1+ NSCLC respond to these drugs. In addition, most patients who take these drugs find their cancer eventually develops resistance and begins to grow again. Patients with disease that has spread (metastasized) to the brain have worse outcomes. Taletrectinib is a new type of targeted therapy that is being developed to treat people who have metastatic ROS1+ NSCLC. Data from a regional phase II clinical trial showed that taletrectinib is well tolerated, effective for patients who have never taken a ROS1 targeted therapy and inhibits ROS1+ NSCLC for patients whose cancer has developed some types of resistance to these drugs. It has also been shown to treat ROS1+ NSCLC tumors that have spread to the brain. This article discusses the rationale and design of a new trial called TRUST-II, which is a global phase II clinical trial looking at how well taletrectinib works and how safe it is. TRUST-II is actively enrolling patients in North America, Europe and Asia. Clinical Trial Registration: NCT04919811 (ClinicalTrials.gov).


Asunto(s)
Neoplasias Encefálicas , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Proteínas Tirosina Quinasas/genética , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Inhibidores de Proteínas Quinasas/efectos adversos , Proteínas Proto-Oncogénicas/genética , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/secundario , Ensayos Clínicos Fase II como Asunto
5.
Antiviral Res ; 207: 105417, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36122619

RESUMEN

Naturally evolved immune-escape PreS2 mutant is an oncogenic caveat of liver cirrhosis and hepatocellular carcinoma (HCC) during chronic hepatitis B virus (HBV) infection. PreS2 mutant is prevalent in above 50% of patients with HCC. In addition, intrahepatic expression of PreS2 mutant large surface antigen (PreS2-LHBS) induces endoplasmic reticulum stress, mitochondria dysfunction, cytokinesis failure, and subsequent chromosome hyperploidy. As PreS2-LHBS has no enzymatic activity, the development of PreS2-specific inhibitors can be challenging. In this study, we aim to identify inhibitors of PreS2-LHBS via the induction of protein-specific degradation. We set up a large-scale protein stability reporter platform and applied an FDA-approved drug library for the screening. We identified ABT199 as a negative modulator of PreS2-LHBS, which induced the degradation of PreS2-LHBS without affecting the general cell viability in both hepatoma and immortalized hepatocytes. Next, by affinity purification screening, we found that PreS2-LHBS interacted with HSC70, a microautophagy mediating chaperone. Simultaneously, inhibitions of lysosomal degradation or microautophagy restored the expression of PreS2-LHBS, suggesting microautophagy is involved in ABT199-induced PreS2-LHBS degradation. Notably, a 24-hr treatment of ABT199 was sufficient for the reduction of DNA damage and cytokinesis failure in PreS2-LHBS expressing hepatocytes. In addition, a persistent treatment of ABT199 for 3 weeks reversed chromosome hyperploidy in PreS2-LHBS cells and suppressed anchorage-independent growth of HBV-positive hepatoma cells. Together, this study identified ABT-199 as a negative modulator of PreS2-LHBS via mediating microautophagy. Our results indicate that long-term inhibition of PreS2-LHBS may serve as a novel strategy for the therapeutic prevention of HBV-mediated HCC.


Asunto(s)
Carcinoma Hepatocelular , Hepatitis B Crónica , Neoplasias Hepáticas , Antígenos de Superficie , Antígenos de Superficie de la Hepatitis B/genética , Antígenos de Superficie de la Hepatitis B/metabolismo , Virus de la Hepatitis B/genética , Humanos , Microautofagia
6.
J Cell Biol ; 221(6)2022 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-35446349

RESUMEN

Subcellular localization of the deubiquitinating enzyme BAP1 is deterministic for its tumor suppressor activity. While the monoubiquitination of BAP1 by an atypical E2/E3-conjugated enzyme UBE2O and BAP1 auto-deubiquitination are known to regulate its nuclear localization, the molecular mechanism by which BAP1 is imported into the nucleus has remained elusive. Here, we demonstrated that transportin-1 (TNPO1, also known as Karyopherin ß2 or Kapß2) targets an atypical C-terminal proline-tyrosine nuclear localization signal (PY-NLS) motif of BAP1 and serves as the primary nuclear transporter of BAP1 to achieve its nuclear import. TNPO1 binding dissociates dimeric BAP1 and sequesters the monoubiquitination sites flanking the PY-NLS of BAP1 to counteract the function of UBE2O that retains BAP1 in the cytosol. Our findings shed light on how TNPO1 regulates the nuclear import, self-association, and monoubiquitination of BAP1 pertinent to oncogenesis.


Asunto(s)
Transporte Activo de Núcleo Celular , Señales de Localización Nuclear , Proteínas Supresoras de Tumor , Ubiquitina Tiolesterasa , beta Carioferinas , Núcleo Celular/metabolismo , Humanos , Señales de Localización Nuclear/metabolismo , Prolina/metabolismo , Tirosina/metabolismo , Enzimas Ubiquitina-Conjugadoras/metabolismo , beta Carioferinas/metabolismo
7.
Int J Mol Sci ; 23(7)2022 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-35409412

RESUMEN

Entry inhibitors against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are urgently needed to control the outbreak of coronavirus disease 2019 (COVID-19). This study developed a robust and straightforward assay that detected the molecular interaction between the receptor-binding domain (RBD) of viral spike protein and the angiotensin-converting enzyme 2 (ACE2) receptor in just 10 min. A drug library of 1068 approved compounds was used to screen for SARS-CoV2 entry inhibition, and 9 active drugs were identified as specific pseudovirus entry inhibitors. A plaque reduction neutralization test using authentic SARS-CoV-2 virus in Vero E6 cells confirmed that 2 of these drugs (Etravirine and Dolutegravir) significantly inhibited the infection of SARS-CoV-2. With molecular docking, we showed that both Etravirine and Dolutegravir are preferentially bound to primary ACE2-interacting residues on the RBD domain, implying that these two drug blocks may prohibit the viral attachment of SARS-CoV-2. We compared the neutralizing activities of these entry inhibitors against different pseudoviruses carrying spike proteins from alpha, beta, gamma, and delta variants. Both Etravirine and Dolutegravir showed similar neutralizing activities against different variants, with EC50 values between 4.5 to 5.8 nM for Etravirine and 10.2 to 22.9 nM for Dolutegravir. These data implied that Etravirine and Dolutegravir may serve as general spike inhibitors against dominant viral variants of SARS-CoV-2.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , SARS-CoV-2 , Enzima Convertidora de Angiotensina 2 , Humanos , Simulación del Acoplamiento Molecular , ARN Viral , Glicoproteína de la Espiga del Coronavirus/metabolismo
8.
Pharmaceutics ; 14(1)2022 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-35057070

RESUMEN

Since 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been rapidly spreading worldwide, causing hundreds of millions of infections. Despite the development of vaccines, insufficient protection remains a concern. Therefore, the screening of drugs for the treatment of coronavirus disease 2019 (COVID-19) is reasonable and necessary. This study utilized bioinformatics for the selection of compounds approved by the U.S. Food and Drug Administration with therapeutic potential in this setting. In addition, the inhibitory effect of these compounds on the enzyme activity of transmembrane protease serine 2 (TMPRSS2), papain-like protease (PLpro), and 3C-like protease (3CLpro) was evaluated. Furthermore, the capability of compounds to attach to the spike-receptor-binding domain (RBD) was considered an important factor in the present assessment. Finally, the antiviral potency of compounds was validated using a plaque reduction assay. Our funnel strategy revealed that tamoxifen possesses an anti-SARS-CoV-2 property owing to its inhibitory performance in multiple assays. The proposed time-saving and feasible strategy may accelerate drug screening for COVID-19 and other diseases.

9.
Materials (Basel) ; 10(7)2017 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-28773175

RESUMEN

A new 122-type phase, monoclinic BaIr2Ge2 is successfully synthesized by arc melting; X-ray diffraction and scanning electron microscopy are used to purify the phase and determine its crystal structure. BaIr2Ge2 adopts a clathrate-like channel framework structure of the monoclinic BaRh2Si2-type, with space group P21/c. Structural comparisons of clathrate, ThCr2Si2, CaBe2Ge2, and BaRh2Si2 structure types indicate that BaIr2Ge2 can be considered as an intermediate between clathrate and layered compounds. Magnetic measurements show it to be diamagnetic and non-superconducting down to 1.8 K. Different from many layered or clathrate compounds, monoclinic BaIr2Ge2 displays a metallic resistivity. Electronic structure calculations performed for BaIr2Ge2 support its observed structural stability and physical properties.

10.
Bioorg Med Chem Lett ; 18(2): 560-4, 2008 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-18068976

RESUMEN

A series of beta-sulfonamide piperidine hydroxamates were prepared and shown to be potent inhibitors of the human epidermal growth factor receptor-2 (HER-2) sheddase with excellent selectivity against MMP-1, -2, -3, and -9. This was achieved by exploiting subtle differences within the otherwise highly conserved S(1)(') binding pocket of the active sites within the metalloprotease family. In addition, it was discovered that the introduction of polarity to the P(1) and P(1)(') groups reduced the projected human clearance.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Metaloproteinasas de la Matriz/metabolismo , Piperidinas/farmacología , Receptor ErbB-2/antagonistas & inhibidores , Sitios de Unión , Humanos , Metaloproteinasas de la Matriz/química , Piperidinas/química , Piperidinas/metabolismo , Receptor ErbB-2/química
11.
Bioorg Med Chem Lett ; 18(1): 159-63, 2008 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-18036818

RESUMEN

In an effort to obtain a MMP selective and potent inhibitor of HER-2 sheddase (ADAM-10), the P1' group of a novel class of (6S,7S)-7-[(hydroxyamino)carbonyl]-6-carboxamide-5-azaspiro[2.5]octane-5-carboxylates was attenuated and the structure-activity relationships (SAR) will be discussed. In addition, it was discovered that unconventional perturbation of the P2' moiety could confer MMP selectivity, which was hypothesized to be a manifestation of the P2' group effecting global conformational changes.


Asunto(s)
Proteínas ADAM/antagonistas & inhibidores , Secretasas de la Proteína Precursora del Amiloide/antagonistas & inhibidores , Ácidos Hidroxámicos/química , Proteínas de la Membrana/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/química , Receptor ErbB-2/antagonistas & inhibidores , Proteínas ADAM/metabolismo , Proteína ADAM10 , Amidas/síntesis química , Amidas/química , Amidas/farmacología , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Compuestos Aza/síntesis química , Compuestos Aza/química , Compuestos Aza/farmacología , Diseño de Fármacos , Ácidos Hidroxámicos/síntesis química , Ácidos Hidroxámicos/farmacología , Proteínas de la Membrana/metabolismo , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/farmacología , Estructura Terciaria de Proteína , Receptor ErbB-2/metabolismo , Compuestos de Espiro/síntesis química , Compuestos de Espiro/química , Compuestos de Espiro/farmacología , Relación Estructura-Actividad , Especificidad por Sustrato
12.
J Med Chem ; 50(4): 603-6, 2007 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-17256836

RESUMEN

The design, synthesis, evaluation, and identification of a novel class of (6S,7S)-N-hydroxy-6-carboxamide-5-azaspiro[2.5]octane-7-carboxamides as the first potent and selective inhibitors of human epidermal growth factor receptor-2 (HER-2) sheddase is described. Several compounds were identified that possess excellent pharmacodynamic and pharmacokinetic properties and were shown to decrease tumor size, cleaved HER-2 extracellular domain plasma levels, and potentiate the effects of the humanized anti-HER-2 monoclonal antibody (trastuzumab) in vivo in a HER-2 overexpressing cancer murine xenograft model.


Asunto(s)
Amidas/síntesis química , Antineoplásicos/síntesis química , Ácidos Hidroxámicos/síntesis química , Piperidinas/síntesis química , Receptor ErbB-2/antagonistas & inhibidores , Compuestos de Espiro/síntesis química , Administración Oral , Amidas/farmacocinética , Amidas/farmacología , Animales , Anticuerpos Monoclonales/farmacología , Anticuerpos Monoclonales Humanizados , Antineoplásicos/farmacocinética , Antineoplásicos/farmacología , Línea Celular Tumoral , Ensayos de Selección de Medicamentos Antitumorales , Sinergismo Farmacológico , Humanos , Ácidos Hidroxámicos/farmacocinética , Ácidos Hidroxámicos/farmacología , Ratones , Conformación Molecular , Piperidinas/química , Piperidinas/farmacología , Compuestos de Espiro/química , Compuestos de Espiro/farmacología , Estereoisomerismo , Relación Estructura-Actividad , Trasplante Heterólogo , Trastuzumab
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...