Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Elife ; 122024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38747713

RESUMEN

During mammalian oocyte meiosis, spindle migration and asymmetric cytokinesis are unique steps for the successful polar body extrusion. The asymmetry defects of oocytes will lead to the failure of fertilization and embryo implantation. In present study, we reported that an actin nucleating factor Formin-like 2 (FMNL2) played critical roles in the regulation of spindle migration and organelle distribution in mouse and porcine oocytes. Our results showed that FMNL2 mainly localized at the oocyte cortex and periphery of spindle. Depletion of FMNL2 led to the failure of polar body extrusion and large polar bodies in oocytes. Live-cell imaging revealed that the spindle failed to migrate to the oocyte cortex, which caused polar body formation defects, and this might be due to the decreased polymerization of cytoplasmic actin by FMNL2 depletion in the oocytes of both mice and pigs. Furthermore, mass spectrometry analysis indicated that FMNL2 was associated with mitochondria and endoplasmic reticulum (ER)-related proteins, and FMNL2 depletion disrupted the function and distribution of mitochondria and ER, showing with decreased mitochondrial membrane potential and the occurrence of ER stress. Microinjecting Fmnl2-EGFP mRNA into FMNL2-depleted oocytes significantly rescued these defects. Thus, our results indicate that FMNL2 is essential for the actin assembly, which further involves into meiotic spindle migration and ER/mitochondria functions in mammalian oocytes.


Asunto(s)
Actinas , Retículo Endoplásmico , Forminas , Meiosis , Mitocondrias , Oocitos , Animales , Retículo Endoplásmico/metabolismo , Oocitos/metabolismo , Forminas/metabolismo , Forminas/genética , Mitocondrias/metabolismo , Ratones , Actinas/metabolismo , Porcinos , Femenino , Huso Acromático/metabolismo
2.
Cell Mol Life Sci ; 81(1): 168, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38587639

RESUMEN

Kinesin family member 3A (KIF3A) is a microtubule-oriented motor protein that belongs to the kinesin-2 family for regulating intracellular transport and microtubule movement. In this study, we characterized the critical roles of KIF3A during mouse oocyte meiosis. We found that KIF3A associated with microtubules during meiosis and depletion of KIF3A resulted in oocyte maturation defects. LC-MS data indicated that KIF3A associated with cell cycle regulation, cytoskeleton, mitochondrial function and intracellular transport-related molecules. Depletion of KIF3A activated the spindle assembly checkpoint, leading to metaphase I arrest of the first meiosis. In addition, KIF3A depletion caused aberrant spindle pole organization based on its association with KIFC1 to regulate expression and polar localization of NuMA and γ-tubulin; and KIF3A knockdown also reduced microtubule stability due to the altered microtubule deacetylation by histone deacetylase 6 (HDAC6). Exogenous Kif3a mRNA supplementation rescued the maturation defects caused by KIF3A depletion. Moreover, KIF3A was also essential for the distribution and function of mitochondria, Golgi apparatus and endoplasmic reticulum in oocytes. Conditional knockout of epithelial splicing regulatory protein 1 (ESRP1) disrupted the expression and localization of KIF3A in oocytes. Overall, our results suggest that KIF3A regulates cell cycle progression, spindle assembly and organelle distribution during mouse oocyte meiosis.


Asunto(s)
Cinesinas , Oocitos , Animales , Ratones , Transporte Biológico , Cinesinas/genética , Meiosis , Metafase
3.
J Anim Sci ; 1012023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-37925610

RESUMEN

The increased production of high-quality oocytes lies at the heart of the search to accelerate the reproduction of high-quality breeding livestock using assisted reproductive technology. Follicle-stimulating hormone (FSH) maintains the arrest of oocyte meiosis during early follicular development in vivo and promotes the synchronous maturation of nucleus and cytoplasm to improve oocyte quality. However, the mechanism by which FSH maintains meiotic arrest in oocytes is still not fully understood. Oocytes spontaneously resume meiosis once released from the arrested state. In this study, we isolated goat antral follicles with a diameter of 2.0-4.0 mm, cultured them in vitro either with or without added FSH, and finally collected the oocytes to observe their meiotic state. The results showed that FSH effectively inhibited the meiotic recovery of oocytes in follicles [4 h: control (n = 84) vs. with FSH (n = 86), P = .0115; 6 h: control (n = 86) vs. FSH (n = 85), P = 0.0308; and 8 h: control (n = 95) vs. FSH (n = 101), P = 0.0039]. FSH significantly inhibited the downregulation of natriuretic peptide receptor 2 (NPR2) expression and cyclic guanosine monophosphate (cGMP) synthesis during follicular culture in vitro (P < 0.05). Further exploration found that FSH promoted the synthesis of 17ß-estradiol (E2) (P = .0249 at 4 h and P = .0039 at 8 h) and maintained the expression of the estrogen nuclear receptor ERß, but not the estrogen nuclear receptor ERα during follicle culture in vitro (P = .0190 at 2 h, and P = .0100 at 4 h). In addition, E2/ER (estrogen nuclear receptors ERα and ERß) mediated the inhibitory effect of FSH on the downregulation of NPR2 expression and cGMP synthesis, ultimately preventing the meiotic recovery of oocytes (P < .05). In summary, our study showed that FSH-induced estrogen production in goat follicles, and the E2/ER signaling pathway, both mediated meiotic arrest in FSH-induced goat oocytes.


Obtaining a greater number of high-quality oocytes to accelerate the reproduction of high-quality breeding livestock using artificial-assisted reproductive technology remains a pressing problem in animal husbandry and requires further research into the mechanism of oocyte maturation. We investigated the regulatory action of follicle-stimulating hormone (FSH) on the meiosis of oocytes during goat follicle culture in vitro. We found that FSH promoted 17ß-estradiol (E2) synthesis and that E2/ER (estrogen nuclear receptors ERα and ERß)-mediated FSH regulation of the CNP/NPR2 (C-type natriuretic peptide/natriuretic peptide receptor 2) signaling pathway and oocyte meiosis in goat follicles. This study provided an improved theoretical foundation for the increased production of high-quality oocytes using in vitro culture methods.


Asunto(s)
Receptor alfa de Estrógeno , Hormona Folículo Estimulante , Animales , Hormona Folículo Estimulante/farmacología , Hormona Folículo Estimulante/metabolismo , Receptor alfa de Estrógeno/metabolismo , Receptores de Estrógenos/metabolismo , Receptor beta de Estrógeno/metabolismo , Cabras , Oocitos , Transducción de Señal , Estrógenos/metabolismo , Meiosis
4.
Theriogenology ; 211: 40-48, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37562190

RESUMEN

The cytoskeleton plays a crucial role in facilitating the successful completion of the meiotic maturation of oocytes. Its influence extends to the process of oocyte nuclear maturation and the proper functioning of various organelles during cytoplasmic maturation. The formin family of proteins plays a crucial role in the molecular regulation of cytoskeletal assembly and organization; however, its role in goat oocytes are not fully understood. Our study examined the inhibition of formins activity, which revealed its crucial role in the maturation of goat oocytes. We observed that the inhibition of formins resulted in meiotic defects in goat oocytes, as evidenced by the hindered extrusion of polar bodies and the expansion of cumulus cells. Additionally, the oocytes exhibited altered actin dynamics and compromised spindle/chromosome structure upon formins inhibition. The results of the transcriptomic analysis highlighted a noteworthy alteration in the mRNA levels of genes implicated in mitochondrial functions and oxidative phosphorylation in formins inhibited oocytes. Validation experiments provided evidence that the meiotic defects observed in these oocytes were due to the excessive early apoptosis induced by reactive oxygen species (ROS). Our findings demonstrate that the involvement of formins in sustaining the cytoskeletal dynamics and mitochondrial function is crucial for the successful meiotic maturation of goat oocytes.


Asunto(s)
Cabras , Meiosis , Animales , Forminas/metabolismo , Cabras/metabolismo , Citoesqueleto/metabolismo , Oocitos/fisiología , Mitocondrias/metabolismo , Actinas/metabolismo
5.
Animals (Basel) ; 13(2)2023 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-36670803

RESUMEN

F-actin is of critical importance in oocyte meiotic maturation. Actin assembly and its dynamics are mainly regulated by actin nucleation factors. The actin-related protein complex 2/3 (Arp2/3) is responsible for the organization of F-actin filaments. However, the role of Arp2/3 complex in goat oocytes has not been fully elucidated. Our findings demonstrate that Arp2/3 complex activity is necessary for the maturation of goat oocytes. The Arp2/3 complex-specific inhibitor CK666 impairs the maturation of goat oocytes and alters the genes associated with cumulus expansion, both of which suggest that normal meiosis is affected. Arp2, one of the subunits of the Arp2/3 complex, was found to be mainly accumulated at the oocyte cortex and to co-localize with F-actin during goat oocyte maturation in our results. Thus, we further investigated the cytoskeleton dynamics and found that Arp2/3 complex inhibition disrupts the F-actin assembly and spindle organization. Further analysis revealed that, in addition to direct effects on the cytoskeleton, Arp2/3 complex could also induce ROS accumulation and oxidative stress by disrupting mitochondrial distribution and function, ultimately increasing the rate of early apoptosis in goat oocytes. Our study provides evidence that the Arp2/3 complex is a key regulator of goat oocyte maturation through its regulation of the cytoskeleton dynamics and mitochondrial function.

6.
Cell Biosci ; 12(1): 25, 2022 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-35255956

RESUMEN

BACKGROUND: Extracellular-signal-regulated kinase (ERK) direct cell fate determination during the early development. The intricate interaction between the deposition of H3K9me2, de novo 5mC, and its oxides affects the remodeling of zygotic epigenetic modification. However, the role of fertilization-dependent ERK in the first cell cycle during zygotic reprogramming remains elusive. METHODS: In the present study, we used the small molecule inhibitor to construct the rapid ERK1/2 inactivation system in early zygotes in mice. The pronuclear H3K9me2 deposition assay and the pre-implantation embryonic development ability were assessed to investigate the effect of fertilization-dependent ERK1/2 on zygotic reprogramming and developmental potential. Immunofluorescence and RT-PCR were performed to measure the 5mC or its oxides and H3K9me2 deposition, and the expression of related genes. RESULTS: We reported that zygotic ERK1/2 inhibition impaired the development competence of pre-implantation embryos. Following the ERK1/2 inhibition, H3K9me2, as well as 5mC and its oxides, were all accumulated abnormally, and the excess accumulation of paternal H3K9me2 and 5mC resulted in reduced asymmetry between parental pronuclei. Furthermore, ERK1/2 inhibition triggered paternal pronuclear localization of the H3K9 methyltransferase G9a and Tet methylcytosine dioxygenase 3 (Tet3). Moreover, the excess localization of G9a antagonized the tight binding of Tet3 to paternal chromatin when ERK1/2 was inhibited. CONCLUSIONS: In conclusion, we propose that zygotic H3K9me2 and 5mC are regulated by fertilization-dependent ERK1/2, which contributes to the development competence of pre-implantation embryos in mice.

7.
Cell Prolif ; 54(9): e13104, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34323331

RESUMEN

OBJECTIVES: RAB14 is a member of small GTPase RAB family which localizes at the endoplasmic reticulum (ER), Golgi apparatus and endosomal compartments. RAB14 acts as molecular switches that shift between a GDP-bound inactive state and a GTP-bound active state and regulates circulation of vesicles between the Golgi and endosomal compartments. In present study, we investigated the roles of RAB14 during oocyte meiotic maturation. MATERIALS AND METHODS: Microinjection with siRNA and exogenous mRNA for knock down and rescue, and immunofluorescence staining, Western blot and real-time RT-PCR were utilized for the study. RESULTS: Our results showed that RAB14 localized in the cytoplasm and accumulated at the cortex during mouse oocyte maturation, and it was also enriched at the spindle periphery. Depletion of RAB14 did not affect polar body extrusion but caused large polar bodies, indicating the failure of asymmetric division. We found that absence of RAB14 did not affect spindle organization but caused the spindle migration defects, and this might be due to the regulation on cytoplasmic actin assembly via the ROCK-cofilin signalling pathway. We also found that RAB14 depletion led to aberrant Golgi apparatus distribution. Exogenous Myc-Rab14 mRNA supplement could significantly rescue these defects caused by Rab14 siRNA injection. CONCLUSIONS: Taken together, our results suggest that RAB14 affects ROCK-cofilin pathway for actin-based spindle migration and Golgi apparatus distribution during mouse oocyte meiotic maturation.


Asunto(s)
Meiosis/fisiología , Oocitos/metabolismo , Oocitos/fisiología , Oogénesis/fisiología , Proteínas de Unión al GTP rab/metabolismo , Actinas , Animales , Citoplasma/metabolismo , Ratones , Ratones Endogámicos ICR , Fosforilación/fisiología , Transducción de Señal/fisiología , Quinasas Asociadas a rho/metabolismo
8.
J Cell Physiol ; 236(11): 7725-7733, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34018605

RESUMEN

During mouse oocyte meiotic maturation, actin filaments play multiple roles in meiosis such as spindle migration and cytokinesis. FASCIN is shown to be an actin-binding and bundling protein, making actin filaments tightly packed and parallel-aligned, and FASCIN is involved in several cellular processes like adhesion and migration. FASCIN is also a potential prognostic biomarker and therapeutic target for the treatment of metastatic disease. However, little is known about the functions of FASCIN in oocyte meiosis. In the present study, we knocked down the expression of FASCIN, and our results showed that FASCIN was essential for oocyte maturation. FASCIN was all expressed in the different stages of oocyte meiosis, and it mainly localized at the cortex of oocytes from the GV stage to the MII stage and showed a similar localization pattern with actin and DAAM1. Depletion of FASCIN affected the extrusion of the first polar body, and we also observed that some oocytes extruded from the large polar bodies. This might have resulted from the defects of actin assembly, which further affected the meiotic spindle positioning. In addition, we showed that inhibition of PKC activity decreased FASCIN expression, indicating that FASCIN might be regulated by PKC. Taken together, our results provided evidence for the important role of FASCIN on actin filaments for spindle migration and polar body extrusion in mouse oocyte meiosis.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Proteínas Portadoras/metabolismo , Meiosis , Proteínas de Microfilamentos/metabolismo , Oocitos/metabolismo , Cuerpos Polares/metabolismo , Huso Acromático/metabolismo , Citoesqueleto de Actina/genética , Animales , Proteínas Portadoras/genética , Células Cultivadas , Femenino , Ratones Endogámicos ICR , Proteínas de Microfilamentos/genética , Proteína Quinasa C/metabolismo , Huso Acromático/genética , Proteínas de Unión al GTP rho/metabolismo
9.
Front Cell Dev Biol ; 9: 661155, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33834027

RESUMEN

Bisphenol A (BPA) is one of the ubiquitous environmental endocrine disruptors (EEDs). Previous studies have shown that the reproduction toxicity of BPA could cause severe effects on the mammal oocytes and disturb the quality of mature oocytes. However, the toxic effects of BPA on the organelles of mouse oocytes have not been reported. In this study, to investigate whether BPA can be toxic to the organelles, we used different concentrations of BPA (50, 100, and 200 µM) to culture mouse oocytes in vitro. The results showed that 100 µM BPA exposure could significantly decrease the developmental capacity of oocytes. Then, we used the immunofluorescence staining, confocal microscopy, and western blotting to investigate the toxic effects of BPA on the organelles. The results revealed that mitochondrial dysfunction is manifested by abnormal distribution and decreased mitochondrial membrane potential. Moreover, the endoplasmic reticulum (ER) is abnormally distributed which is accompanied by ER stress showing increased expression of GRP78. For the Golgi apparatus, BPA-exposed dose not disorder the Golgi apparatus distribution but caused abnormal structure of Golgi apparatus, which is manifested by the decrease of GM130 protein expression. Moreover, we also found that BPA-exposed led to the damage of lysosome, which were shown by the increase of LAMP2 protein expression. Collectively, our findings demonstrated that the exposure of BPA could damage the normal function of the organelles, which may explain the reduced maturation quality of oocytes.

10.
Microsc Microanal ; 27(2): 400-408, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33478608

RESUMEN

GBF1 [Golgi brefeldin A (BFA) resistance factor 1] is a member of the guanine nucleotide exchange factors Arf family. GBF1 localizes at the cis-Golgi and endoplasmic reticulum (ER)-Golgi intermediate compartment where it participates in ER-Golgi traffic by assisting in the recruitment of the coat protein COPI. However, the roles of GBF1 in oocyte meiotic maturation are still unknown. In the present study, we investigated the regulatory functions of GBF1 in mouse oocyte organelle dynamics. In our results, GBF1 was stably expressed during oocyte maturation, and GBF1 localized at the spindle periphery during metaphase I. Inhibiting GBF1 activity led to aberrant accumulation of the Golgi apparatus around the spindle. This may be due to the effects of GBF1 on the localization of GM130, as GBF1 co-localized with GM130 and inhibiting GBF1 induced condensation of GM130. Moreover, the loss of GBF1 activity affected the ER distribution and induced ER stress, as shown by increased GRP78 expression. Mitochondrial localization and functions were affected, as the mitochondrial membrane potential was altered. Taken together, these results suggest that GBF1 has wide-ranging effects on the distribution and functions of Golgi apparatus, ER, and mitochondria as well as normal polar body formation in mouse oocytes.


Asunto(s)
Factores de Ribosilacion-ADP , Factores de Intercambio de Guanina Nucleótido , Factores de Ribosilacion-ADP/metabolismo , Animales , Retículo Endoplásmico/metabolismo , Chaperón BiP del Retículo Endoplásmico , Aparato de Golgi/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Ratones , Oocitos/metabolismo
11.
J Cell Physiol ; 236(7): 4944-4953, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33368268

RESUMEN

Obesity causes many reproductive dysfunctions such as reduced conception, infertility, and early pregnancy loss, and this is largely due to the negative effects of obesity on oocyte and embryo quality. In the present study, we employed single-cell RNA transcriptome sequencing to investigate the potential causes for the maternal obesity effects on mouse embryos. Our results showed that the 4-cell and morula/blastocyst rates were all significantly decreased during embryo development in obese mice. Genome-wide analysis indicated that obesity altered the expression of more than 1100 genes in 2-cell embryos, including the genes which were related to the p53 signaling pathway and apoptosis. Further analysis showed that the expression of 47 genes related to DNA damage was changed, and a positive γH2A signal and the altered expression of Rad51 and Tex15 were observed in the obese embryos. Obesity also affected histone methylation, shown by the decrease of the H3K4-me2 level. Besides this, we observed the occurrence of autophagy and apoptosis in the embryos of obese mice. There were 42 genes that were related to autophagy/apoptosis that showed aberrant expression, and the positive LC3 signal and the decrease of Clec16a, Rraga, and Atg10 level were also observed. In summary, our study suggested that obesity affected early embryonic development by inducing DNA damage, aberrant histone methylation, and autophagy levels in mice.


Asunto(s)
Autofagia/fisiología , Metilación de ADN/genética , Reparación del ADN/genética , Desarrollo Embrionario/fisiología , Obesidad Materna/patología , Animales , Apoptosis/fisiología , Blastocisto/fisiología , Proteínas de Ciclo Celular/biosíntesis , Desarrollo Embrionario/genética , Femenino , Regulación del Desarrollo de la Expresión Génica/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Oocitos/citología , Embarazo , Recombinasa Rad51/biosíntesis , Análisis de la Célula Individual , Transcriptoma
12.
FEBS J ; 288(9): 3055-3067, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33206458

RESUMEN

Protein regulator of cytokinesis 1 (PRC1) is a microtubule bundling protein that is involved in the regulation of the central spindle bundle and spindle orientation during mitosis. However, the functions of PRC1 during meiosis have rarely been studied. In this study, we explored the roles of PRC1 during meiosis using an oocyte model. Our results found that PRC1 was expressed at all stages of mouse oocyte meiosis, and PRC1 accumulated in the midzone/midbody during anaphase/telophase I. Moreover, depleting PRC1 caused defects in polar body extrusion during mouse oocyte maturation. Further analysis found that PRC1 knockdown did not affect meiotic spindle formation or chromosome segregation; however, deleting PRC1 prevented formation of the midzone and midbody at the anaphase/telophase stage of meiosis I, which caused cytokinesis defects and further induced the formation of two spindles in the oocytes. PRC1 knockdown increased the level of tubulin acetylation, indicating that microtubule stability was affected. Furthermore, KIF4A and PRC1 showed similar localization in the midzone/midbody of oocytes at anaphase/telophase I, while the depletion of KIF4A affected the expression and localization of PRC1. The PRC1 mRNA injection rescued the defects caused by PRC1 knockdown in oocytes. In summary, our results suggest that PRC1 is critical for midzone/midbody formation and cytokinesis under regulation of KIF4A in mouse oocytes.


Asunto(s)
Proteínas de Ciclo Celular/genética , Cinesinas/genética , Meiosis/genética , Huso Acromático/genética , Anafase/genética , Animales , Segregación Cromosómica/genética , Citocinesis/genética , Ratones , Microtúbulos/genética , Mitosis/genética , Oocitos/crecimiento & desarrollo , Oocitos/metabolismo , Oogénesis/genética
13.
J Cell Biochem ; 122(2): 290-300, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33025669

RESUMEN

Monopolar spindle-1 (Mps1) is a critical interphase regulator that also involves into the spindle assembly checkpoint for the cell cycle control in both mitosis and meiosis. However, the functions of Mps1 during mouse early embryo development is still unclear. In this study, we reported the important roles of Mps1 in the first cleavage of mouse embryos. Our data indicated that the loss of Mps1 activity caused precocious cleavage of zygotes to 2-cell embryos; however, prolonged culture disturbed the early embryo development to the blastocyst. We found that the spindle organization was disrupted after Mps1 inhibition, and the chromosomes were misaligned in the first cleavage. Moreover, the kinetochore-microtubule attachment was lost and Aurora B failed to accumulate to the kinetochores, indicating that the spindle assembly checkpoint (SAC) was activated. Furthermore, the inhibition of Mps1 activity resulted in an increase of DNA damage, which further induced oxidative stress, showing with positive γ-H2A.X signal and increased reactive oxygen species level. Ultimately, irreparable DNA damage and oxidative stress-activated apoptosis and autophagy, which was confirmed by the positive Annexin-V signal and increased autophagosomes. Taken together, our data indicated that Mps1 played important roles in the control of SAC and DNA repair during mouse early embryo development.


Asunto(s)
Puntos de Control de la Fase M del Ciclo Celular/fisiología , Mitosis/fisiología , Huso Acromático/metabolismo , Animales , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Segregación Cromosómica/genética , Segregación Cromosómica/fisiología , Daño del ADN/genética , Daño del ADN/fisiología , Reparación del ADN/genética , Reparación del ADN/fisiología , Femenino , Cinetocoros/metabolismo , Puntos de Control de la Fase M del Ciclo Celular/genética , Meiosis/genética , Meiosis/fisiología , Ratones , Microtúbulos/metabolismo , Mitosis/genética
14.
Cell Prolif ; 53(10): e12895, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32914523

RESUMEN

OBJECTIVES: DNA damage and errors of accurate chromosome segregation lead to aneuploidy and foetal defects. DNA repair and the spindle assembly checkpoint (SAC) are the mechanisms developed to protect from these defects. Checkpoint kinase 1 (CHK1) is reported to be an important DNA damage response protein in multiple models, but its functions remain unclear in early mouse embryos. MATERIALS AND METHODS: Immunofluorescence staining, immunoblotting and real-time reverse transcription polymerase chain reaction were used to perform the analyses. Reactive oxygen species levels and Annexin-V were also detected. RESULTS: Loss of CHK1 activity accelerated progress of the cell cycle at the first cleavage; however, it disturbed the development of early embryos to the morula/blastocyst stages. Further analysis indicated that CHK1 participated in spindle assembly and chromosome alignment, possibly due to its regulation of kinetochore-microtubule attachment and recruitment of BubR1 and p-Aurora B to the kinetochores, indicating its role in SAC activity. Loss of CHK1 activity led to embryonic DNA damage and oxidative stress, which further induced early apoptosis and autophagy, indicating that CHK1 is responsible for interphase DNA damage repair. CONCLUSIONS: Our results indicate that CHK1 is a key regulator of the SAC and DNA damage repair during early embryonic development in mice.


Asunto(s)
Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/metabolismo , Reparación del ADN , Puntos de Control de la Fase M del Ciclo Celular , Animales , Apoptosis/efectos de los fármacos , Aurora Quinasa B/metabolismo , Proteínas de Ciclo Celular/metabolismo , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/antagonistas & inhibidores , Segregación Cromosómica/efectos de los fármacos , Daño del ADN/efectos de los fármacos , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Desarrollo Embrionario/efectos de los fármacos , Cinetocoros/metabolismo , Puntos de Control de la Fase M del Ciclo Celular/efectos de los fármacos , Ratones , Microtúbulos/metabolismo , Estrés Oxidativo/efectos de los fármacos , Compuestos de Fenilurea/farmacología , Proteínas Serina-Treonina Quinasas/metabolismo , Pirazinas/farmacología , Especies Reactivas de Oxígeno/metabolismo
15.
Cell Cycle ; 19(17): 2148-2157, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32687433

RESUMEN

The early embryonic development is important for the subsequent embryo implantation, and any defects in this process can lead to embryonic aneuploidy, which causes miscarriage and birth defects. Survivin is the member of inhibitor of apoptosis protein (IAP) family, and it is also an essential subunit of chromosomal passenger complex (CPC), which regulates both apoptosis and cell cycle control in many models. However, the roles of survivin in mouse early embryos remain unclear. In the present study, we showed that survivin activity was essential for mouse early embryo development. Our results showed that survivin mainly accumulated at chromosomes at metaphase stage and located at the spindle midzone at anaphase and telophase stages during the first cleavage. Loss of survivin activity led to the failure of cleavage in early mouse embryos. Further analysis indicated that survivin involved into spindle organization and chromosome alignment. Moreover, inhibition of survivin induced oxidative stress and DNA damage, showing with the increase of ROS level, the positive γH2A signal, and the increase of Rad51 level. We also observed the occurrence of autophagy and apoptosis in the survivin-inhibited embryos. In summary, our study suggested that survivin was a critical regulator for early embryo development through its regulation on spindle organization, chromosome alignment, and DNA damage.


Asunto(s)
Cromosomas de los Mamíferos/metabolismo , Daño del ADN , Embrión de Mamíferos/metabolismo , Desarrollo Embrionario , Huso Acromático/metabolismo , Survivin/metabolismo , Animales , Apoptosis , Autofagia , Ratones , Estrés Oxidativo
16.
Environ Pollut ; 266(Pt 1): 114967, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32645552

RESUMEN

Nonylphenol (NP) is a chemical raw material and intermediate which is mainly used in the production of surfactants, lubricating oil additives and pesticide emulsifiers. NP is reported to be toxic on the immune system, nervous system and reproductive system due to its binding to estrogen receptors. However, the toxicity of NP on mammalian oocyte quality remains unclear. In present study, we explored the effects of NP exposure on mouse oocyte maturation. Our results showed that 4 weeks of NP exposure increased the number of atresia follicles and decreased oocyte developmental competence. Transcriptomic analysis indicated that NP exposure altered the expression of more than 800 genes in oocytes, including multiple biological pathways. Subcellular structure examination indicated that NP exposure disrupted meiotic spindle organization and caused chromosome misalignment. Moreover, aberrant mitochondrial distribution and decreased membrane potential were also observed, indicating that NP exposure caused mitochondria dysfunction. Further analysis showed that NP exposure resulted in the accumulation of reactive oxygen species (ROS), which causes oxidative stress; and the NP-exposed oocytes showed positive Annexin-V signal, indicating the occurrence of early apoptosis. In summary, our results indicated that NP exposure reduced oocyte quality by affecting cytoskeletal dynamics and mitochondrial function, which further induced oxidative stress and apoptosis in mice.


Asunto(s)
Mitocondrias , Oocitos , Animales , Apoptosis , Ratones , Fenoles , Especies Reactivas de Oxígeno
17.
Aging (Albany NY) ; 12(11): 10415-10426, 2020 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-32484784

RESUMEN

The quality of the early embryo is critical for embryonic development and implantation. Errors during cleavage lead to aneuploidy in embryos. As a cell cycle checkpoint protein, CHK2 participates in DNA replication, cell cycle arrest and spindle assembly. However, the functions of CHK2 in early development of the mouse embryo remain largely unknown. In this study, we show that CHK2 is localized on the spindle in metaphase and mainly accumulates at spindle poles in anaphase/telophase during the first cleavage of the mouse embryo. CHK2 inhibition led to cleavage failure in early embryonic development, accompanied by abnormal spindle assembly and misaligned chromosomes. Moreover, the loss of CHK2 activity increased the level of cellular DNA damage, which resulted in oxidative stress. Then, apoptosis and autophagy were found to be active in these embryos. In summary, our results suggest that CHK2 is an essential regulator of spindle assembly and DNA repair during early embryonic development in mice.


Asunto(s)
Quinasa de Punto de Control 2/metabolismo , Reparación del ADN , Desarrollo Embrionario/genética , Huso Acromático/metabolismo , Animales , Apoptosis/genética , Autofagia/genética , Quinasa de Punto de Control 2/genética , Daño del ADN , Embrión de Mamíferos , Femenino , Metafase/genética , Ratones , Modelos Animales , Estrés Oxidativo/genética , Embarazo
18.
FASEB J ; 34(7): 9615-9627, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32472654

RESUMEN

RAB7 is a small GTPase that belongs to the Rab family, and as a vesicle trafficking factor it is shown to regulate the transport to late endocytic compartments, autophagosome maturation and organelle function. In present study, we showed the critical roles of RAB7 GTPase on actin dynamics and mitochondria function in oocyte meiosis. RAB7 mainly accumulated at cortex and spindle periphery during oocyte maturation. RAB7 depletion caused the failure of polar body extrusion and asymmetric division, and Rab7 exogenous mRNA supplement could rescue the defects caused by RAB7 RNAi. Based on mass spectrometry analysis, we found that RAB7 associated with several actin nucleation factors and mitochondria-related proteins in oocytes. The depletion of RAB7 caused the decrease of actin dynamics, which further affected meiotic spindle migration to the oocyte cortex. In addition, we found that RAB7 could maintain mitochondrial membrane potential and the mitochondrial distribution in mouse oocytes, and this might be due to its effects on the phosphorylation of DRP1 at Ser616 domain. Taken together, our data indicated that RAB7 transported actin nucleation factor for actin polarization, which further affected the phosphorylation of DRP1 for mitochondria dynamics and the meiotic spindle migration in mouse oocytes.


Asunto(s)
Actinas/fisiología , Dinaminas/metabolismo , Mitocondrias/metabolismo , Oocitos/fisiología , Huso Acromático/fisiología , Proteínas de Unión al GTP rab/metabolismo , Animales , Dinaminas/genética , Femenino , Ratones , Mitocondrias/genética , Oocitos/citología , Fosforilación , Cuerpos Polares , Proteínas de Unión al GTP rab/genética , Proteínas de Unión a GTP rab7
19.
Biol Reprod ; 102(6): 1203-1212, 2020 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-32167535

RESUMEN

Formin-like 3 (FMNL3) is a member of the formin-likes (FMNLs), which belong to the formin family. As an F-actin nucleator, FMNL3 is essential for several cellular functions, such as polarity control, invasion, and migration. However, the roles of FMNL3 during oocytes meiosis remain unclear. In this study, we investigated the functions of FMNL3 during mouse oocyte maturation. Our results showed that FMNL3 mainly concentrated in the oocyte cortex and spindle periphery. Depleting FMNL3 led to the failure of polar body extrusion, and we also found large polar bodies in the FMNL3-deleted oocytes, indicating the occurrence of symmetric meiotic division. There was no effect of FMNL3 on spindle organization; however, we observed spindle migration defects at late metaphase I, which might be due to the decreased cytoplasmic actin. Microinjecting Fmnl3-EGFP mRNA into Fmnl3-depleted oocytes significantly rescued these defects. In addition, the results of co-immunoprecipitation and the perturbation of protein expression experiments suggested that FMNL3 interacted with the actin-binding protein FASCIN for the regulation of actin filaments in oocytes. Thus, our results provide the evidence that FMNL3 regulates FASCIN for actin-mediated spindle migration and cytokinesis during mouse oocyte meiosis.


Asunto(s)
Actinas/metabolismo , Forminas/metabolismo , Forminas/farmacología , Proteínas de Microfilamentos/metabolismo , Oocitos/fisiología , Receptores Odorantes/metabolismo , Huso Acromático/metabolismo , Actinas/genética , Animales , Citocinesis/fisiología , Femenino , Forminas/genética , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/fisiología , Ratones , Proteínas de Microfilamentos/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Interferente Pequeño , Receptores Odorantes/genética
20.
Environ Pollut ; 256: 113374, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31672358

RESUMEN

Melatonin is a hormone which is generated from pineal gland, and it is responsible for the regulation of wake-sleep cycle. Melatonin is a well-known antioxidant and free radical scavenger to protect against multiple type of tissue damage. While ochratoxin A (OTA) is a mycotoxin found widely in contaminated food and foodstuffs, which causes nephrotoxicity, hepatotoxicity, immunotoxicity, and reproductive damage in humans and animals. In present study we report the toxicity of OTA on porcine oocyte quality and the protective effects of melatonin on OTA-exposed oocytes. Using transcriptome analysis our results show that OTA exposure alters the expression of multiple genes in oocytes, indicating its effect on oocyte maturation. The cellular changes following OTA treatment are examined, and the results show that OTA adversely affects oocyte polar body extrusion, which is confirmed by the delay of Cdc2-mediated cell cycle progression. OTA exposure also disrupts meiotic spindle formation, which is confirmed by altered phosphorylated MAPK expression. RNA-seq screening and further fluorescence staining results show that OTA induces aberrant mitochondria distribution and oxidative phosphorylation defects, which then causes oxidative stress, followed by early apoptosis and autophagy. Treatment with melatonin significantly ameliorates oxidative stress and apoptosis, which further protects cell cycle and spindle formation in OTA-exposed oocytes. Collectively, these results show the protective effects of melatonin against defects induced by OTA during porcine meiotic oocyte maturation.


Asunto(s)
Apoptosis/efectos de los fármacos , Melatonina/farmacología , Ocratoxinas/toxicidad , Oocitos/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Porcinos , Animales , Antioxidantes/metabolismo , Autofagia/efectos de los fármacos , Ciclo Celular/efectos de los fármacos , Ciclo Celular/genética , Femenino , Humanos , Oocitos/metabolismo , Oocitos/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...