Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Eur J Immunol ; : e2350655, 2024 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-38973083

RESUMEN

Sepsis arises from an uncontrolled inflammatory response triggered by infection or stress, accompanied by alteration in cellular energy metabolism, and a strong correlation exists between these factors. Alpha-ketoglutarate (α-KG), an intermediate product of the TCA cycle, has the potential to modulate the inflammatory response and is considered a crucial link between energy metabolism and inflammation. The scavenger receptor (SR-A5), a significant pattern recognition receptor, assumes a vital function in anti-inflammatory reactions. In the current investigation, we have successfully illustrated the ability of α-KG to mitigate inflammatory factors in the serum of septic mice and ameliorate tissue damage. Additionally, α-KG has been shown to modulate metabolic reprogramming and macrophage polarization. Moreover, our findings indicate that the regulatory influence of α-KG on sepsis is mediated through SR-A5. We also elucidated the mechanism by which α-KG regulates SR-A5 expression and found that α-KG reduced the N6-methyladenosine level of macrophages by up-regulating the m6A demethylase ALKBH5. α-KG plays a crucial role in inhibiting inflammation by regulating SR-A5 expression through m6A demethylation during sepsis. The outcomes of this research provide valuable insights into the relationship between energy metabolism and inflammation regulation, as well as the underlying molecular regulatory mechanism.

2.
J Ophthalmol ; 2024: 9911979, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38716089

RESUMEN

Purpose: To determine the advantages of next-generation metagenomic sequencing (mNGS) technology in the diagnosis and treatment of infectious keratitis (IK). Methods: A total of 287 patients with IK admitted to the Department of Ophthalmology of Nanjing First Hospital between August 2018 and December 2022 were analyzed retrospectively, and the pathogenic causes, etiological characteristics, detection, treatment methods, and efficacy were summarized. Results: Trauma and foreign matter were the most common causes of IK (144 patients, 50.2%). Of the 287 patients, 228 (79.4%) were diagnosed with a specific etiology, including 110 (48.2%) fungal infections, 44 (19.3%) viral infections, 42 (18.4%) mixed infections, and 30 (13.2%) bacterial infections. Filamentous fungi represented by Fusarium and Aspergillus were the most common, followed by bacteria such as Pseudomonas aeruginosa, Streptococcus pneumoniae, viruses (Herpes Simplex Virus/Varicella-Zoster Virus), and parasites. The positivity rates of secretion culture, corneal laser confocal microscopy (CM), mNGS, and pathological sections were 47.3% (133/281), 45.3% (111/245), 83.9% (104/124), and 19.3% (40/207), respectively. The positivity rate of mNGS for bacteria and viruses was higher than that of the other methods, and the positivity rate for fungi was the same as that for CM. As a result, 214 cases (74.6%) were cured, 51 cases (17.8%) improved, 8 cases (2.8%) did not heal, ocular content enucleation was performed in 14 cases (4.9%), and the overall efficacy rate was 92.3%. Conclusion: Trauma and foreign matter are the main causes of IK. The mNGS technology is an efficient and comprehensive detection method for viruses and bacteria, especially for mixed infections.

3.
Photochem Photobiol Sci ; 23(5): 987-996, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38662174

RESUMEN

Pycnoporus sanguineus is a fungus of the phylum Basidiomycota that has many applications in traditional medicine, modern pharmaceuticals, and agricultural industries. Light plays an essential role in the metabolism, growth, and development of fungi. This study evaluated the mycelial growth and antioxidant and anti-inflammatory activities in P. sanguineus fermentation broth (PFB) cultured under different wavelengths of LED irradiation or in the dark. Compared to the dark cultures, the dry weight of mycelia in red- and yellow-light cultures decreased by 37 and 35% and the yields of pigments increased by 30.92 ± 2.18 mg and 31.75 ± 3.06 mg, respectively. Compared with the dark culture, the DPPH free radical scavenging ability, ABTS+ free radical scavenging capacity, and reducing power of yellow-light cultures increased significantly, and their total phenolic content peaked at 180.0 ± 8.34 µg/mL. However, the reducing power in blue-light cultures was significantly reduced, though the total phenol content did not vary with that of dark cultures. In LPS- and IFN-γ-stimulated RAW 264.7 cells, nitrite release was significantly reduced in the red and yellow light-irradiated PFB compared with the dark culture. In the dark, yellow-, and green-light cultures, TNF-α production in the inflamed RAW 264.7 cells was inhibited by 62, 46, and 14%, respectively. With red-, blue-, and white-light irradiation, TNF-α production was significantly enhanced. Based on these results, we propose that by adjusting the wavelength of the light source during culture, one can effectively modulate the growth, development, and metabolism of P. sanguineus.


Asunto(s)
Antioxidantes , Luz , Pycnoporus , Ratones , Animales , Antioxidantes/farmacología , Antioxidantes/química , Antioxidantes/metabolismo , Células RAW 264.7 , Pycnoporus/metabolismo , Factores Inmunológicos/farmacología , Factores Inmunológicos/química , Lipopolisacáridos/farmacología , Lipopolisacáridos/antagonistas & inhibidores , Picratos/antagonistas & inhibidores , Picratos/química , Agentes Inmunomoduladores/farmacología , Agentes Inmunomoduladores/química , Compuestos de Bifenilo/antagonistas & inhibidores , Compuestos de Bifenilo/química , Compuestos de Bifenilo/farmacología
4.
Polymers (Basel) ; 15(17)2023 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-37688141

RESUMEN

Metal injection molding (MIM) is a near net-shape manufacturing process combining conventional plastic injection molding and powder metallurgy. Two kinds of injections molds for MIM were developed using conventional mold steel and aluminum (Al)-filled epoxy resins in this study. The characteristics of the mold made by rapid tooling technology (RTT) were evaluated and compared with that of the fabricated conventional machining method through the MIM process. It was found that the service life of the injection mold fabricated by Al-filled epoxy resin is about 1300 molding cycles with the average surface roughness of 158 nm. The mold service life of the injection mold fabricated by Al-filled epoxy resin is about 1.3% that of the conventional mold steel. The reduction in manufacturing cost of an injection mold made by Al-filled epoxy resin is about 30.4% compared with that of the fabricated conventional mold steel. The saving in manufacturing time of an injection mold made by RTT is about 30.3% compared with that of the fabricated conventional machining method.

5.
Acta Crystallogr D Struct Biol ; 79(Pt 7): 610-623, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37314408

RESUMEN

Over the past decade, iterative projection algorithms, an effective approach to recovering phases from a single intensity measurement, have found application in protein crystallography to directly surmount the `phase problem'. However, previous studies have always assumed that some prior knowledge constraints (i.e. a low-resolution envelope about the protein structure in the crystal cell or histogram matching requiring a similar density distribution to the target crystal) must be known for successful phase retrieval, thus hindering its widespread application. In this study, a novel phase-retrieval workflow is proposed that eliminates the need for a reference density distribution by utilizing low-resolution diffraction data in phasing algorithms. The approach involves randomly assigning one out of 12 possible phases at 30° intervals (or two for centric reflections) to produce an initial envelope, which is then refined through density modification after each run of phase retrieval. To evaluate the success of the phase-retrieval procedure, information entropy is introduced as a new metric. This approach was validated using ten protein structures with high solvent content, demonstrating its effectiveness and robustness.


Asunto(s)
Algoritmos , Proteínas , Cristalografía por Rayos X , Proteínas/química , Entropía
6.
Phys Rev Lett ; 124(21): 210502, 2020 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-32530656

RESUMEN

The unavoidable interaction of a quantum open system with its environment leads to the dissipation of quantum coherence and correlations, making its dynamical behavior a key role in many quantum technologies. In this Letter, we demonstrate the engineering of multiple dissipative channels by controlling the adjacent nuclear spins of a nitrogen-vacancy center in diamond. With a controllable non-Markovian dynamics of this open system, we observe that the quantum Fisher information flows to and from the environment using different noisy channels. Our work contributes to the developments of both noisy quantum metrology and quantum open systems from the viewpoints of metrologically useful entanglement.

7.
Nat Commun ; 10(1): 594, 2019 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-30723212

RESUMEN

Nuclear magnetic resonance (NMR) of single spins have recently been detected by quantum sensors. However, the spectral resolution has been limited by the sensor's relaxation to a few kHz at room temperature. This can be improved by using quantum memories, at the expense of sensitivity. In contrast, classical signals can be measured with exceptional spectral resolution by using continuous measurement techniques, without compromising sensitivity. When applied to single-spin NMR, it is critical to overcome the impact of back action inherent of quantum measurement. Here we report sequential weak measurements on a single 13C nuclear spin. The back-action causes the spin to undergo a quantum dynamics phase transition from coherent trapping to coherent oscillation. Single-spin NMR at room-temperature with a spectral resolution of 3.8 Hz is achieved. These results enable the use of measurement-correlation schemes for the detection of very weakly coupled single spins.

8.
Sci Rep ; 7(1): 2563, 2017 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-28566731

RESUMEN

One unique feature of quantum mechanics is the Heisenberg uncertainty principle, which states that the outcomes of two incompatible measurements cannot simultaneously achieve arbitrary precision. In an information-theoretic context of quantum information, the uncertainty principle can be formulated as entropic uncertainty relations with two measurements for a quantum bit (qubit) in two-dimensional system. New entropic uncertainty relations are studied for a higher-dimensional quantum state with multiple measurements, and the uncertainty bounds can be tighter than that expected from two measurements settings and cannot result from qubits system with or without a quantum memory. Here we report the first room-temperature experimental testing of the entropic uncertainty relations with three measurements in a natural three-dimensional solid-state system: the nitrogen-vacancy center in pure diamond. The experimental results confirm the entropic uncertainty relations for multiple measurements. Our result represents a more precise demonstrating of the fundamental uncertainty principle of quantum mechanics.

9.
Phys Rev Lett ; 118(15): 150504, 2017 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-28452518

RESUMEN

Single-shot readout of qubits is required for scalable quantum computing. Nuclear spins are superb quantum memories due to their long coherence time, but are difficult to be read out in a single shot due to their weak interaction with probes. Here we demonstrate single-shot readout of a weakly coupled ^{13}C nuclear spin at room temperature, which is unresolvable in traditional protocols. States of the weakly coupled nuclear spin are trapped and read out projectively by sequential weak measurements, which are implemented by dynamical decoupling pulses. A nuclear spin coupled to the nitrogen-vacancy (NV) center with strength 330 kHz is read out in 200 ms with a fidelity of 95.5%. This work provides a general protocol for single-shot readout of weakly coupled qubits at room temperature and therefore largely extends the range of physical systems for scalable quantum computing.

11.
Nat Commun ; 6: 6726, 2015 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-25832364

RESUMEN

Precise parameter estimation plays a central role in science and technology. The statistical error in estimation can be decreased by repeating measurement, leading to that the resultant uncertainty of the estimated parameter is proportional to the square root of the number of repetitions in accordance with the central limit theorem. Quantum parameter estimation, an emerging field of quantum technology, aims to use quantum resources to yield higher statistical precision than classical approaches. Here we report the first room-temperature implementation of entanglement-enhanced phase estimation in a solid-state system: the nitrogen-vacancy centre in pure diamond. We demonstrate a super-resolving phase measurement with two entangled qubits of different physical realizations: an nitrogen-vacancy centre electron spin and a proximal (13)C nuclear spin. The experimental data shows clearly the uncertainty reduction when entanglement resource is used, confirming the theoretical expectation. Our results represent an elemental demonstration of enhancement of quantum metrology against classical procedure.

12.
Nanoscale ; 6(17): 10134-9, 2014 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-25042514

RESUMEN

We experimentally investigate the protection of electron spin coherence of a nitrogen-vacancy (NV) centre in diamond by dynamic nuclear spin polarization (DNP). The electron spin decoherence of an NV centre is caused by the magnetic field fluctuation of the (13)C nuclear spin bath, which contributes large thermal fluctuation to the centre electron spin when it is in an equilibrium state at room temperature. To address this issue, we continuously transfer the angular momentum from electron spin to nuclear spins, and pump the nuclear spin bath to a polarized state under the Hartmann-Hahn condition. The bath polarization effect is verified by the observation of prolongation of the electron spin coherence time (T). Optimal conditions for the DNP process, including the pumping pulse duration and repeat numbers, are proposed by numerical simulation and confirmed by experiment. We also studied the depolarization effect of laser pulses. Our results provide a new route for quantum information processing and quantum simulation using the polarized nuclear spin bath.

13.
Nat Commun ; 4: 2254, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23912335

RESUMEN

Realistic quantum computing is subject to noise. Therefore, an important frontier in quantum computing is to implement noise-resilient quantum control over qubits. At the same time, dynamical decoupling can protect the coherence of qubits. Here we demonstrate non-trivial quantum evolution steered by dynamical decoupling control, which simultaneously suppresses noise effects. We design and implement a self-protected controlled-NOT gate on the electron spin of a nitrogen-vacancy centre and a nearby carbon-13 nuclear spin in diamond at room temperature, by employing an engineered dynamical decoupling control on the electron spin. Final state fidelity of 0.91(1) is observed in preparation of a Bell state using the gate. At the same time, the qubit coherence time is elongated at least 30 fold. The design scheme does not require the dynamical decoupling control to commute with the qubit interaction and therefore works for general qubit systems. This work marks a step towards implementing realistic quantum computing systems.

14.
Sci Rep ; 3: 1498, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23511233

RESUMEN

In contrast to the classical world, an unknown quantum state cannot be cloned ideally, as stated by the no-cloning theorem. However, it is expected that approximate or probabilistic quantum cloning will be necessary for different applications, and thus various quantum cloning machines have been designed. Phase quantum cloning is of particular interest because it can be used to attack the Bennett-Brassard 1984 (BB84) states used in quantum key distribution for secure communications. Here, we report the first room-temperature implementation of quantum phase cloning with a controllable phase in a solid-state system: the nitrogen-vacancy centre of a nanodiamond. The phase cloner works well for all qubits located on the equator of the Bloch sphere. The phase is controlled and can be measured with high accuracy, and the experimental results are consistent with theoretical expectations. This experiment provides a basis for phase-controllable quantum information devices.

15.
Sci Rep ; 2: 432, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22666535

RESUMEN

Fluctuations of local fields cause decoherence of quantum objects. Usually at high temperatures, thermal noises are much stronger than quantum fluctuations unless the thermal effects are suppressed by certain techniques such as spin echo. Here we report the discovery of strong quantum-fluctuation effects of nuclear spin baths on free-induction decay of single electron spins in solids at room temperature. We find that the competition between the quantum and thermal fluctuations is controllable by an external magnetic field. These findings are based on Ramsey interference measurement of single nitrogen-vacancy center spins in diamond and numerical simulation of the decoherence, which are in excellent agreement.


Asunto(s)
Fenómenos Químicos , Electrones , Campos Magnéticos , Temperatura , Algoritmos , Isótopos de Carbono/química , Diamante/química , Modelos Químicos , Nitrógeno/química , Tamaño de la Partícula , Puntos Cuánticos , Teoría Cuántica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...