Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nanoscale ; 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38856916

RESUMEN

As a new soft electronic product, a flexible precontact sensor provides spatial position sensing ability. However, the properties of traditional polymer materials change in industrial environments with extreme temperatures, which can cause the sensor function to decline or even fail. In this study, we propose a flexible fiber sensor based on the capacitor principle, which achieves a stable spatial positioning function and is not affected by a wide range of temperature changes. The fiber element of the sensor is obtained through the deposition of a flexible Al2O3 ceramic coating onto the surface of a carbon nanotube fiber (CNTF) via atomic layer deposition (ALD) technology. Coatings of different thicknesses (100 nm, 200 nm, and 300 nm) show different colors. The temperature resistance and flame retardancy of Al2O3 keep the morphology of the composite fiber unaffected by flame or high temperatures. Even at extreme temperatures (-78 °C to 500 °C), the sensor's sensing ability exhibits excellent stability. In addition, the spatial perception of the fibers remained viable after repeated bending (10 000 times). We demonstrate the potential of the sensor to acquire position information during high-temperature industrial pipe docking.

2.
ACS Appl Mater Interfaces ; 16(20): 26797-26807, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38722638

RESUMEN

Soft robotics has been a rapidly growing field in recent decades due to its advantages of softness, deformability, and adaptability to various environments. However, the separation of perception and actuation in soft robot research hinders its progress toward compactness and flexibility. To address this limitation, we propose the use of a dielectric elastomer actuator (DEA), which exhibits both an actuation capability and perception stability. Specifically, we developed a DEA array to localize the 3D spatial position of objects. Subsequently, we integrate the actuation and sensing properties of DEA into soft robots to achieve self-perception. We have developed a system that integrates actuation and sensing and have proposed two modes to achieve this integration. Furthermore, we demonstrated the feasibility of this system for soft robots. When the robots detect an obstacle or an approaching object, they can swiftly respond by avoiding or escaping the obstacle. By eliminating the need for separate perception and motion considerations, self-perceptional soft robots can achieve an enhanced response performance and enable applications in a more compact and flexible field.

3.
ACS Appl Mater Interfaces ; 15(24): 29449-29456, 2023 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-37289009

RESUMEN

Compared to traditional temperature control methods, the electrocaloric (EC) effect offers several advantages such as small size, rapid response, and environmental friendliness. However, current EC effects are generally used for the cooling area rather than heating. Here, poly(vinylidenefluorideter-trifluoroethylene-ter-chlorofluoroethylene) [P(VDF-TrFE-CFE)] film is combined with an electrothermal actuator (ETA) composed of polyethylene (PE) film and carbon nanotube (CNT) film. The heating and cooling process of the EC effect is used to help drive the ETA. The P(VDF-TrFE-CFE) film can produce a temperature change (ΔT) of 3.7 °C at 90 MV/m, and this process occurs within 0.1 s. With this ΔT, the composite film actuator can produce a deflection of 10°. In addition, due to the electrostrictive effect of P(VDF-TrFE-CFE), the composite film can also be used as an actuator. At 90 MV/m, the composite film actuator can produce a deflection over 240° within 0.05 s. Apart from other current driving modes for thermally responsive actuators, in this paper, a new type of soft actuating composite film by the temperature change of the EC effect is proposed. Except from ETAs, the EC effect can also have a wide application prospect in other thermally responsive actuators, including shape memory polymer actuators, shape memory alloy actuators, and so on.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...