Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 151
Filtrar
1.
J Environ Sci (China) ; 147: 217-229, 2025 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39003041

RESUMEN

Dissolved black carbon (DBC) plays a crucial role in the migration and bioavailability of iron in water. However, the properties of DBC releasing under diverse pyrolysis conditions and dissolving processes have not been systematically studied. Here, the compositions of DBC released from biochar through redox processes dominated by bacteria and light were thoroughly studied. It was found that the DBC released from straw biochar possess more oxygen-containing functional groups and aromatic substances. The content of phenolic and carboxylic groups in DBC was increased under influence of microorganisms and light, respectively. The concentration of phenolic hydroxyl groups increased from 10.0∼57.5 mmol/gC to 6.6 ∼65.2 mmol/gC, and the concentration of carboxyl groups increased from 49.7∼97.5 mmol/gC to 62.1 ∼113.3 mmol/gC. Then the impacts of DBC on pyrite dissolution and microalgae growth were also investigated. The complexing Fe3+ was proved to play a predominant role in the dissolution of ferrous mineral in DBC solution. Due to complexing between iron ion and DBC, the amount of dissolved Fe in aquatic water may rise as a result of elevated number of aromatic components with oxygen containing groups and low molecular weight generated under light conditions. Fe-DBC complexations in solution significantly promoted microalga growth, which might be attributed to the stimulating effect of dissolved Fe on the chlorophyll synthesis. The results of study will deepen our understanding of the behavior and ultimate destiny of DBC released into an iron-rich environment under redox conditions.


Asunto(s)
Carbono , Carbón Orgánico , Hierro , Oxidación-Reducción , Hierro/química , Carbón Orgánico/química , Carbono/química , Contaminantes Químicos del Agua/química
2.
Artículo en Inglés | MEDLINE | ID: mdl-39291397

RESUMEN

In recent decades, the escalating frequency of environmental risk events, arising from sources such as industrial accidents, chemical spills, or other anthropogenic activities, has intensified threats to the ecological environment. The targeted identification of high-risk areas, formulation of control lists for key risk sources within regions, and the implementation of differentiated management strategies remain significant challenges. This study employed an administrative region environmental risk assessment and gridded environmental risk analysis method to comprehensively evaluate the environmental risks in the city of Kunming, China. The results indicated a fourfold increase in the number of environmental risk sources from 2012 to 2022. The sources were found to be widely distributed across the entire region but exhibited localized clustering. The environmental risk receptors were primarily concentrated around a local lake, in densely populated counties, and near rivers and drinking water sources. Risk hotspot areas within the target region were identified using the gridded environmental risk analysis method. A list of 29 key control areas was proposed, including nine industrial parks and 20 streets. Measures were proposed for handling unexpected incidents. The findings provide data useful for policy formulation and environmental management in similar regions of mountainous cities.

3.
Physiol Plant ; 176(4): e14465, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39126176

RESUMEN

Sugar is vital for plant growth and determines fruit quality via its content and composition. This study explores the differential sugar accumulation in two plum varieties, 'Fengtangli (FTL)' and 'Siyueli (SYL)'. The result showed that 'FTL' fruit displayed higher soluble solids and sugar content at various development stages. Metabolomic analysis indicated increased sorbitol in 'FTL', linked to elevated sorbitol-6-phosphate-dehydrogenase (S6PDH) activity. Transcriptome analysis identified a key gene for sorbitol synthesis, PsS6PDH4, which was significantly higher expressed in 'FTL' than in 'SYL'. The function of the PsS6PDH4 gene was verified in strawberry, apple, and plum fruits using transient overexpression and virus-induced gene silencing techniques. The results showed that overexpression of the PsS6PDH4 gene in strawberry, apple, and plum fruits promoted the accumulation of soluble solids content and sorbitol, while inhibition of the gene reduced soluble solids content and sorbitol content. Meanwhile, analysis of the relationship between PsS6PDH4 gene expression, sorbitol, and soluble solids content in four different plum varieties revealed a significant correlation between PsS6PDH4 gene expression and soluble solids content as well as sorbitol content. This research discovered PsS6PDH4 as a crucial regulator of sugar metabolism in plum, with potential applications in improving fruit sweetness and nutritional value in various fruit species. Understanding these molecular pathways can lead to innovative approaches for enhancing fruit quality, benefiting sustainable agriculture and consumer preferences in the global fruit industry.


Asunto(s)
Frutas , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Prunus domestica , Sorbitol , Sorbitol/metabolismo , Prunus domestica/genética , Prunus domestica/metabolismo , Frutas/genética , Frutas/metabolismo , Frutas/crecimiento & desarrollo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Fragaria/genética , Fragaria/metabolismo , Azúcares/metabolismo , Malus/genética , Malus/metabolismo
4.
Toxics ; 12(8)2024 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-39195698

RESUMEN

The threat posed by water pollutants to aquatic ecosystems and human health cannot be overlooked, and the assessment of the toxicity of these contaminants is paramount to understanding their risks and formulating effective control measures. Luminescent bacteria-based assays, as a vital tool in evaluating contaminant toxicity, encounter a challenge in ensuring accuracy due to the phenomenon of "Hormesis" exhibited by pollutants towards biological entities, which may skew toxicity assessments. This study elucidated the specific effects of pollutants on luminescent bacteria at different concentrations, used modeling to characterize the effects and predict their toxicity trends, and explored the applicable concentration ranges for different pollutants. Research revealed that six typical pollutants, namely PAHs, endocrine disruptors, antibiotics, pesticides, heavy metals, and phytosensory substances, could promote the luminescence intensity of luminescent bacteria at low concentrations, and the promotional effect increased and then decreased. However, when the concentration of the substances reached a certain threshold, the effect changed from promotional to inhibitory, and the rate of inhibition was directly proportional to the concentration. The EC50 values of six types of substances to luminescent bacteria is as follows: endocrine disruptors > pesticides > antibiotics > heavy metals > polycyclic aromatic hydrocarbons > chemosensory agents. The effect curves were further fitted using the model to analyze the maximum point of the promotion of luminescence intensity by different substances, the threshold concentration, and the tolerance of luminescent bacteria to different substances. The maximum promotion of bacterial luminescence intensity was 29% for Bisphenol A at 0.005 mg/L and the minimum threshold concentration of chromium was 0.004 mg/L, and the maximum bacterial tolerance to erythromycin is 6.74. In addition, most of the current environmental concentrations had a positive effect on luminescent bacteria and may still be in the range of concentrations that promote luminescence as the substances continue to accumulate. These findings will enhance the accuracy and comprehensiveness of toxicity assessments, thereby facilitating more informed and effective decision-making in the realms of environmental protection and pollution management.

5.
Int J Biol Macromol ; 278(Pt 3): 134499, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39217038

RESUMEN

Given their increasing environmental and health harms, it is crucial to develop green and sustainable techniques for scavenging antibiotics represented by oxytetracycline (OTC) from wastewater. In the present work, a structurally simple lanthanum-calcium dual crosslinked carboxymethyl chitosan (CMCS-La3+-Ca2+) aerogel was innovatively synthesized for adsorptive removal of OTC. It was found that CMCS and La3+ sites collaboratively participated in OTC elimination, and OTC removal peaked over the wide pH range of 4-7. The process of OTC sorption was better described by the pseudo-second-order kinetic model and Redlich-Peterson model, and the saturated uptake amount toward OTC was up to 580.91 mg/g at 303 K, which was comparable to the bulk of previous records. The as-fabricated composite also exerted exceptional capture capacity toward OTC in consecutive adsorption-desorption runs and high-salinity wastewater. Amazingly, its packed column continuously ran for over 60 h with a dynamic uptake amount of 215.21 mg/g until the adsorption was saturated, illustrating its great potential in scale-up applications. Mechanism studies demonstrated that multifarious spatially-isolated reactive sites of CMCS-La3+-Ca2+ cooperatively involved in OTC capture via multi-mechanisms, such as n-π EDA interaction, H-bonding, La3+-complexation, and cation-π bonding. All the above superiorities endow it as a promising adsorbent for OTC-containing wastewater decontamination.


Asunto(s)
Calcio , Quitosano , Lantano , Oxitetraciclina , Aguas Residuales , Contaminantes Químicos del Agua , Purificación del Agua , Quitosano/química , Quitosano/análogos & derivados , Oxitetraciclina/química , Lantano/química , Aguas Residuales/química , Adsorción , Calcio/química , Purificación del Agua/métodos , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/aislamiento & purificación , Cinética , Concentración de Iones de Hidrógeno , Geles/química
6.
J Hazard Mater ; 473: 134678, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38781856

RESUMEN

Increasing antivirals in surface water caused by their excessive consumption pose serious threats to aquatic organisms. Our recent research found that the input of antiviral drug arbidol to algal bloom water can induce acute toxicity to the growth and metabolism of Microcystis aeruginosa, resulting in growth inhibition, as well as decrease in chlorophyll and ATP contents. However, the toxic mechanisms involved remained obscure, which were further investigated through transcriptomic analysis in this study. The results indicated that 885-1248 genes in algae were differentially expressed after exposure to 0.01-10.0 mg/L of arbidol, with the majority being down-regulated. Analysis of commonly down-regulated genes found that the cellular response to oxidative stress and damaged DNA bonding were affected, implying that the stress defense system and DNA repair function of algae might be damaged. The down-regulation of genes in porphyrin metabolism, photosynthesis, carbon fixation, glycolysis, tricarboxylic acid cycle, and oxidative phosphorylation might inhibit chlorophyll synthesis, photosynthesis, and ATP supply, thereby hindering the growth and metabolism of algae. Moreover, the down-regulation of genes related to nucleotide metabolism and DNA replication might influence the reproduction of algae. These findings provided effective strategies to elucidate toxic mechanisms of contaminants on algae in algal bloom water.


Asunto(s)
Antivirales , Indoles , Microalgas , Microcystis , Transcriptoma , Contaminantes Químicos del Agua , Indoles/toxicidad , Antivirales/toxicidad , Antivirales/farmacología , Transcriptoma/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Microalgas/efectos de los fármacos , Microalgas/genética , Microalgas/metabolismo , Microalgas/crecimiento & desarrollo , Microcystis/efectos de los fármacos , Microcystis/genética , Microcystis/metabolismo , Microcystis/crecimiento & desarrollo , Eutrofización/efectos de los fármacos , Clorofila/metabolismo
7.
Chemosphere ; 359: 142131, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38697574

RESUMEN

The addition of bacterial agents is an effective method for improving nitrogen removal from wetlands. Herein, an aerobic denitrifier, RC-15, was added to a vertical-flow constructed wetland (CW), and the presence of functional genes and microbial communities was investigated at different CW depths. For the RC-15-treated CW, the removal of NO3- and TN during the process was significantly greater than in the control. Quantitative PCR revealed that nirS is a dominant denitrifying gene for treating WWTP tailwater. Moreover, the presence of the RC-15 strain significantly enhanced the abundance of the napA gene and nirK gene in the CWs. The napA gene was concentrated in the upper layer of the CWs, and the nirK gene was concentrated in the middle and bottom layers. Compared to the control, the addition of the bacterial agent Trial resulted in a more diverse denitrification pathway, a greater abundance of 16Sr RNA, and a greater number of denitrifying strains. According to the microbial community analysis, Proteobacteria and Chloroflexi dominated denitrification in the CWs. Greater abundances of Thauera, Aeromonas and Ardenticatenales were found at the genus level, indicating that these genera have potential applications in future nitrogen removal projects.


Asunto(s)
Desnitrificación , Nitrógeno , Eliminación de Residuos Líquidos , Humedales , Nitrógeno/metabolismo , Eliminación de Residuos Líquidos/métodos , Aguas Residuales/microbiología , Aerobiosis , Microbiota , ARN Ribosómico 16S/genética , Bacterias/metabolismo , Bacterias/genética , Bacterias/clasificación , Proteobacteria/genética , Proteobacteria/metabolismo , Proteobacteria/aislamiento & purificación , Contaminantes Químicos del Agua/metabolismo
8.
Nature ; 630(8016): 381-386, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38811733

RESUMEN

Lignocellulose is mainly composed of hydrophobic lignin and hydrophilic polysaccharide polymers, contributing to an indispensable carbon resource for green biorefineries1,2. When chemically treated, lignin is compromised owing to detrimental intra- and intermolecular crosslinking that hampers downstream process3,4. The current valorization paradigms aim to avoid the formation of new C-C bonds, referred to as condensation, by blocking or stabilizing the vulnerable moieties of lignin5-7. Although there have been efforts to enhance biomass utilization through the incorporation of phenolic additives8,9, exploiting lignin's proclivity towards condensation remains unproven for valorizing both lignin and carbohydrates to high-value products. Here we leverage the proclivity by directing the C-C bond formation in a catalytic arylation pathway using lignin-derived phenols with high nucleophilicity. The selectively condensed lignin, isolated in near-quantitative yields while preserving its prominent cleavable ß-ether units, can be unlocked in a tandem catalytic process involving aryl migration and transfer hydrogenation. Lignin in wood is thereby converted to benign bisphenols (34-48 wt%) that represent performance-advantaged replacements for their fossil-based counterparts. Delignified pulp from cellulose and xylose from xylan are co-produced for textile fibres and renewable chemicals. This condensation-driven strategy represents a key advancement complementary to other promising monophenol-oriented approaches targeting valuable platform chemicals and materials, thereby contributing to holistic biomass valorization.


Asunto(s)
Compuestos de Bencidrilo , Biomasa , Fraccionamiento Químico , Lignina , Fenoles , Compuestos de Bencidrilo/química , Compuestos de Bencidrilo/metabolismo , Catálisis , Celulosa/química , Celulosa/metabolismo , Fraccionamiento Químico/métodos , Hidrogenación , Lignina/química , Lignina/metabolismo , Fenoles/química , Fenoles/metabolismo , Madera/química , Xilanos/química , Xilanos/metabolismo , Xilosa/química , Xilosa/metabolismo , Combustibles Fósiles , Textiles
9.
Mol Biol Rep ; 51(1): 539, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38642202

RESUMEN

BACKGROUND: Auxin response factor (ARF), a transcription factors that controls the expression of genes responsive to auxin, plays a key role in the regulation of plant growth and development. Analyses aimed at identifying ARF family genes and characterizing their functions in Juglans sigillata Dode are lacking. METHODS AND RESULTS: We used bioinformatic approaches to identify members of the J. sigillata ARF gene family and analyze their evolutionary relationships, collinearity, cis-acting elements, and tissue-specific expression patterns. The expression patterns of ARF gene family members under natural drought conditions were also analyzed. The J. sigillata ARF gene family contained 31 members, which were unevenly distributed across 16 chromosomes. We constructed a phylogenetic tree of JsARF genes and other plant ARF genes. Cis-acting elements in the promoters of JsARF were predicted. JsARF28 showed higher expressions in both the roots and leaves. A heat map of the transcriptome data of the cluster analysis under drought stress indicated that JsARF3/9/11/17/20/26 are responsive to drought. The expression of the 11 ARF genes varied under PEG treatment and JsARF18 and JsARF20 were significantly up-regulated. CONCLUSIONS: The interactions between abiotic stresses and plant hormones are supported by our cumulative data, which also offers a theoretical groundwork for comprehending the ARF mechanism and drought resistance in J. sigillata.


Asunto(s)
Ácidos Indolacéticos , Juglans , Ácidos Indolacéticos/metabolismo , Filogenia , Juglans/genética , Sequías , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estrés Fisiológico/genética
10.
J Environ Manage ; 358: 120827, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38608575

RESUMEN

The environmental safety of nanoscale molybdenum disulfide (MoS2) has attracted considerable attention, but its influence on the horizontal migration of antibiotic resistance genes and the ecological risks entailed have not been reported. This study addressed the influence of exposure to MoS2 at different concentrations up to 100 mg/L on the conjugative transfer of antibiotic resistance genes carried by RP4 plasmids with two strains of Escherichia coli. As a result, MoS2 facilitated RP4 plasmid-mediated conjugative transfer in a dose-dependent manner. The conjugation of RP4 plasmids was enhanced as much as 7-fold. The promoting effect is mainly attributable to increased membrane permeability, oxidative stress induced by reactive oxygen species, changes in extracellular polymer secretion and differential expression of the genes involved in horizontal gene transfer. The data highlight the distinct dose dependence of the conjugative transfer of antibiotic resistance genes and the need to improve awareness of the ecological and health risks of nanoscale transition metal dichalcogenides.


Asunto(s)
Disulfuros , Farmacorresistencia Microbiana , Escherichia coli , Molibdeno , Plásmidos , Molibdeno/química , Plásmidos/genética , Disulfuros/química , Escherichia coli/genética , Escherichia coli/efectos de los fármacos , Farmacorresistencia Microbiana/genética , Conjugación Genética , Antibacterianos/farmacología , Transferencia de Gen Horizontal
11.
Environ Sci Technol ; 58(13): 5832-5843, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38511412

RESUMEN

Photosensitizer-mediated abiotic oxidation of Mn(II) can yield soluble reactive Mn(III) and solid Mn oxides. In eutrophic water systems, the ubiquitous algal extracellular organic matter (EOM) is a potential photosensitizer and may have a substantial impact on the oxidation of Mn(II). Herein, we focused on investigating the photochemical oxidation process from Mn(II) to solid Mn oxide driven by EOM. The results of irradiation experiments demonstrated that the generation of Mn(III) intermediate was crucial for the successful photo oxidization of Mn(II) to solid Mn oxide mediated by EOM. EOM can serve as both a photosensitizer and a ligand, facilitating the formation of the Mn(III)-EOM complex. The complex exhibited excellent efficiency in removing 17α-ethinylestradiol. Furthermore, the complex underwent decomposition as a result of reactions with reactive intermediates, forming a solid Mn oxide. The presence of nitrate can enhance the photochemical oxidation process, facilitating the conversion of Mn(II) to Mn(III) and then to solid Mn oxide. This study deepens our grasp of Mn(II) geochemical processes in eutrophic water and its impact on organic micropollutant fate.


Asunto(s)
Etinilestradiol , Óxidos , Óxidos/química , Fármacos Fotosensibilizantes , Compuestos de Manganeso/química , Oxidación-Reducción , Agua/química
12.
Gene ; 913: 148385, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38493973

RESUMEN

Juglans sigillata Dode is one of the important tree species in southwest China, and it has significant economic and ecological value. However, there is still a lack of effective methods to identify the functional genes of J. sigillata. By verifying the model plant tobacco, the pTRV2::JsPDS vector was able to cause photobleaching. This study showed that photobleaching occurred 24 and 30 d after the silencing vector was infected with aseptic seedlings and fruits of J. sigillata, respectively. When the OD600 was 0.6, and the injection dose was 500 µL, the gene silencing efficiency of aseptic seedlings was the highest at 16.7 %, significantly better than other treatments. Moreover, when the OD600 was 0.8, and the injection dose was 500 µL, the gene silencing efficiency in the walnut fruit was the highest (20 %). In addition, the VIGS system was successfully used to silence JsFLS2 and JsFLS4 genes in J. sigillata. This study also showed that the flavonol content and gene expression in the treatment group were decreased compared to the control group. In addition, the proteins transcribed and translated from the JsFLS4 gene may have higher catalytic activity for dihydroquercetin. The above results indicate that the TRV-mediated VIGS system can be an ideal tool for studying J. sigillata gene function.


Asunto(s)
Juglans , Virus de Plantas , Juglans/genética , Silenciador del Gen , Fenotipo , Frutas , Nicotiana , Plantones/genética , Regulación de la Expresión Génica de las Plantas , Virus de Plantas/genética
13.
Int J Biol Macromol ; 264(Pt 1): 130554, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38431001

RESUMEN

Antibiotics have been considered as a group of emerging contaminants for their stable chemical structure, significant pseudo-persistence, and biological toxicity. Tetracycline (TC), as one of the typical antibiotics frequently detected in environmental media, can cause the dissemination and accumulation of antibiotic resistance gene (ARG), ultimately threatening human health and environmental safety. Herein, a novel iron­calcium di-crosslinked graphene oxide/alginate (GO/SA-Fe3+-Ca2+) aerogel was facilely synthesized for TC uptake. It was found that the introduction of GO nanosheets and Fe3+ sites into composite enormously enhanced TC removal. Specifically, TC can be stably and efficiently eliminated over the wide pH range of 5-8. The fitted maximum qe with Liu isotherm model at 308 K reached 1664.05 mg/g, surpassing almost all reported sorbents. The pseudo-second-order kinetic model with chemical sorption characteristics better fitted TC adsorption process, which was endothermic and spontaneous in nature. Multifarious adsorptive sites of GO/SA-Fe3+-Ca2+ synergically participated in TC uptake through multi-mechanisms (e.g., π-π EDA, cation-π bonding, H-bonding, Fe3+-coordination, and electrostatic attraction, etc.). The as-prepared composite showed satisfactory TC removal in several runs of adsorption-desorption operations, high salinity, and model aquaculture wastewater. Moreover, the packed-column could continuously run for >200 h until adsorption saturation was achieved with a dynamic adsorption capacity of 216.69 mg/g, manifesting its scale-up engineering applications. All above merits make as-constructed composite an alternative sorbent for eliminating TC from complex wastewater.


Asunto(s)
Grafito , Aguas Residuales , Contaminantes Químicos del Agua , Humanos , Calcio , Microesferas , Alginatos/química , Contaminantes Químicos del Agua/química , Antibacterianos/farmacología , Antibacterianos/química , Tetraciclina/química , Adsorción , Cinética , Concentración de Iones de Hidrógeno
14.
J Hazard Mater ; 466: 133609, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38310846

RESUMEN

The environmental risks resulting from the increasing antivirals in water are largely unknown, especially in eutrophic lakes, where the complex interactions between algae and drugs would alter hazards. Herein, the environmental risks of the antiviral drug arbidol towards the growth and metabolism of Microcystis aeruginosa were comprehensively investigated, as well as its biotransformation mechanism by algae. The results indicated that arbidol was toxic to Microcystis aeruginosa within 48 h, which decreased the cell density, chlorophyll-a, and ATP content. The activation of oxidative stress increased the levels of reactive oxygen species, which caused lipid peroxidation and membrane damage. Additionally, the synthesis and release of microcystins were promoted by arbidol. Fortunately, arbidol can be effectively removed by Microcystis aeruginosa mainly through biodegradation (50.5% at 48 h for 1.0 mg/L arbidol), whereas the roles of bioadsorption and bioaccumulation were limited. The biodegradation of arbidol was dominated by algal intracellular P450 enzymes via loss of thiophenol and oxidation, and a higher arbidol concentration facilitated the degradation rate. Interestingly, the toxicity of arbidol was reduced after algal biodegradation, and most of the degradation products exhibited lower toxicity than arbidol. This study revealed the environmental risks and transformation behavior of arbidol in algal bloom waters.


Asunto(s)
Indoles , Lagos , Microcystis , Sulfuros , Clorofila A , Antivirales/toxicidad , Microcistinas/toxicidad , Microcistinas/metabolismo
15.
Nat Commun ; 15(1): 734, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38272912

RESUMEN

Thought-out utilization of entire lignocellulose is of great importance to achieving sustainable and cost-effective biorefineries. However, there is a trade-off between efficient carbohydrate utilization and lignin-to-chemical conversion yield. Here, we fractionate corn stover into a carbohydrate fraction with high enzymatic digestibility and reactive lignin with satisfactory catalytic depolymerization activity using a mild high-solid process with aqueous diethylamine (DEA). During the fractionation, in situ amination of lignin achieves extensive delignification, effective lignin stabilization, and dramatically reduced nonproductive adsorption of cellulase on the substrate. Furthermore, by designing a tandem fractionation-hydrogenolysis strategy, the dissolved lignin is depolymerized and aminated simultaneously to co-produce monophenolics and pyridine bases. The process represents the viable scheme of transforming real lignin into pyridine bases in high yield, resulting from the reactions between cleaved lignin side chains and amines. This work opens a promising approach to the efficient valorization of lignocellulose.

16.
Sci Total Environ ; 916: 169765, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38181948

RESUMEN

Gallic acid (GA) is an allelochemical that has been utilized in high concentrations for the management of harmful algal blooms (HABs). However, there is limited knowledge regarding its impact on the growth of M. aeruginosa as the GA concentration transitions from high to low during the HABs control process. This study has revealed that as the GA concentration decreases (from 10 mg/L to 0.001 µg/L), a dose-response relationship becomes apparent in the growth of M. aeruginosa and microcystin production, characterized by high-dose inhibition and low-dose stimulation. Notably, at the concentration of 0.1 µg/L GA, the most significant growth-promoting effect on both growth and MCs synthesis was observed. The growth rate and maximum cell density were increased by 1.09 and 1.16 times, respectively, compared to those of the control group. Additionally, the contents of MCs synthesis saw a remarkable increase, up by 1.85 times. Furthermore, lower GA concentrations stimulated the viability of cyanobacterial cells, resulting in substantially higher levels of reactive oxygen species (ROS) and chlorophyll-a (Chl a) compared to other concentrations. Most importantly, the expression of genes governing MCs synthesis was significantly upregulated, which appears to be the primary driver behind the significantly higher MCs levels compared to other conditions. The ecological risk quotient (RQ) value of 0.1 µg/L GA was the highest of all experimental groups, which was approximately 30 times higher than that of the control, indicating moderate risk. Therefore, it is essential to pay attention to the effect of M. aeruginosa growth, metabolism and water ecological risk under the process of reducing GA concentration after dosing during the HABs control process.


Asunto(s)
Cianobacterias , Microcystis , Microcistinas/metabolismo , Clorofila A/metabolismo , Cianobacterias/metabolismo , Floraciones de Algas Nocivas
17.
Soft Matter ; 20(3): 463-483, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38167904

RESUMEN

As a special type of branched polymers, comb-like polymers simultaneously possess the structural characteristics of a linear backbone profile and crowded sidechain branches/grafts, and such structural uniqueness leads to reduced interchain entanglement, enhanced molecular orientation, and unique stimulus-response behavior, which greatly expands the potential applications in the fields of super-soft elastomers, molecular sensors, lubricants, photonic crystals, etc. In principle, all these molecular features can be traced back to three structural parameters, i.e., the degree of polymerization of the backbone (Nb), the degree of polymerization of the graft sidechain (Ng), and the grafting density (σ). Consequently, it is of great importance to understand the correlation mechanism between the structural characteristics and physicochemical properties, among which, the conformational properties in dilute solution have received the most attention due to its central position in polymer science. In the past decades, the development of synthetic chemistry and characterization techniques has greatly stimulated the progress of this field, and a number of experiments have been executed to verify the conformational properties; however, due to the complexity of the structural parameters and the diversity of the chemical design, the achieved experimental progress displays significant controversies compared with the theoretical predictions. This review aims to provide a full picture of recent research progress on this topic, specifically, (1) first, a few classical theoretical models regarding the chain conformation are introduced, and the quasi-two-parameter (QTP) theory for the conformation analysis is highlighted; (2) second, the research progress of the static conformation of comb-like polymers in dilute solution is discussed; (3) third, the research progress of the dynamic conformation in dilute solution is further discussed. The key issues, existing controversies and future research directions are also highlighted. We hope that this review can provide insightful information for the understanding of the conformational properties of comb-like polymers, open a new door for the regulation of conformational behavior in related applications, and promote related theoretical and experimental research in the community.

18.
J Hazard Mater ; 465: 133155, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38091802

RESUMEN

17α-ethinylestradiol (EE2), a synthetic endocrine-disrupting chemical, can degrade in natural waters where humic acids (HA) and dissolved iron (DFe) are present. The iron is mostly bound in Fe(III)-HA complexes, the formation process of Fe(III)-HA complexes and their effect on EE2 degradation were explored in laboratory experiments. The mechanism of ferrihydrite facilitated by HA was explored with results indicating that HA facilitated the dissolution of ferrihydrite and the generation of Fe(III)-HA complexes with the stable chemical bonds such as C-O, CO in neutral, alkaline media with a suitable Fe/C ratio. 1O2, •OH, and 3HA* were all found to be important in the photodegradation of EE2 mediated by Fe(III)-HA complexes. Fe(III)-HA complexes could produce Fe(II) and hydrogen peroxide (H2O2) to create conditions suitable for photo-Fenton reactions at neutral pH. HA helped to maintain higher dissolved iron concentrations and alter the Fe(III)/Fe(II) cycling. The natural EE2 photodegradation pathway elucidated here provides a theoretical foundation for investigating the natural transformation of other trace organic contaminants in aquatic environments.

19.
Environ Res ; 242: 117750, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38029822

RESUMEN

Nitrogen (N) fertilization profoundly improves crop agronomic yield but triggers reactive N (Nr) loss into the environment. Nitrous (N2O) and ammonia (NH3) emissions are the main Nr species that affect climate change and eco-environmental health. Biochar is considered a promising soil amendment, and its efficacy on individual Nr gas emission reduction has been widely reported. However, the interactions and trade-offs between these two Nr species after biochar addition have not been comprehensively analysed. The influencing factors, such as biochar characteristics, environmental conditions, and management measures, remain uncertain. Therefore, 35 publications (145 paired observations) were selected for a meta-analysis to explore the simultaneous mitigation potential of biochar on N2O and NH3 emissions after its application on arable soil. The results showed that biochar application significantly reduced N2O emission by 7.09% while having no significant effect on NH3 volatilisation. Using biochar with a low pH, moderate BET, or pyrolyzed under moderate temperatures could jointly mitigate N2O and NH3 emissions. Additionally, applying biochar to soils with moderate soil organic carbon, high soil total nitrogen, or low cation exchange capacity showed similar responses. The machine-learning model suggested that biochar pH is a dominating moderator of its efficacy in mitigating N2O and NH3 emissions simultaneously. The findings of this study have major implications for biochar application management and aid the further realisation of the multifunctionality of biochar application in agriculture, which could boost agronomic production while lowering environmental costs.


Asunto(s)
Carbono , Carbón Orgánico , Suelo , Óxido Nitroso , Fertilizantes/análisis , Agricultura/métodos , Nitrógeno/análisis
20.
J Food Sci ; 89(1): 523-539, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38010727

RESUMEN

Gluco-oligosaccharides (GlcOS) are potential prebiotics that positively modulate beneficial gut commensals like lactobacilli. For the rational design of GlcOS as prebiotics or combined with lactobacilli as synbiotics, it is important to establish the structure requirements of GlcOS and specificity toward lactobacilli. Herein, the utilization of 10 GlcOS with varied degrees of polymerization (DP) and glycosidic linkages by 7 lactobacilli strains (Levilactobacillus brevis ATCC 8287, Limosilactobacillus reuteri ATCC PTA 6475, Lacticaseibacillus rhamnosus ATCC 53103, Lentilactobacillus buchneri ATCC 4005, Limosilactobacillus fermentum FUA 3589, Lactiplantibacillus plantarum WCFS1, and Lactobacillus gasseri ATCC 33323) was studied. L. brevis ATCC 8287 was the only strain that grew on α/ß-(1→4/6) linked disaccharides, whereas other strains showed diverse patterns, dependent on the availability of genes encoding sugar transporters and catabolic enzymes. The effect of DP on GlcOS utilization was strain dependent. ß-(1→4) Linked cello-oligosaccharides (COS) supported the growth of L. brevis ATCC 8287 and L. plantarum WCFS1, and shorter COS (DP 2-3) were preferentially utilized over longer COS (DP 4-7) (consumption ≥90% vs. 40%-60%). α-(1→4) Linked maltotriose and maltodextrin (DP 2-11) were effectively utilized by L. brevis ATCC 8287, L. reuteri ATCC 6475, and L. plantarum WCFS1, but not L. fermentum FUA 3589. Growth of L. brevis ATCC 8287 on branched isomalto-oligosaccharides (DP 2-6) suggested preferential consumption of DP 2-3, but no preference between α-(1→6) and α-(1→4) linkages. The knowledge of the structure-specific GlcOS utilization by different lactobacilli from this study helps the structural rationale of GlcOS for prebiotic development.


Asunto(s)
Limosilactobacillus reuteri , Probióticos , Simbióticos , Glicósidos , Polimerizacion , Oligosacáridos/química , Prebióticos , Probióticos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA