Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Am J Hum Genet ; 111(4): 742-760, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38479391

RESUMEN

FRY-like transcription coactivator (FRYL) belongs to a Furry protein family that is evolutionarily conserved from yeast to humans. The functions of FRYL in mammals are largely unknown, and variants in FRYL have not previously been associated with a Mendelian disease. Here, we report fourteen individuals with heterozygous variants in FRYL who present with developmental delay, intellectual disability, dysmorphic features, and other congenital anomalies in multiple systems. The variants are confirmed de novo in all individuals except one. Human genetic data suggest that FRYL is intolerant to loss of function (LoF). We find that the fly FRYL ortholog, furry (fry), is expressed in multiple tissues, including the central nervous system where it is present in neurons but not in glia. Homozygous fry LoF mutation is lethal at various developmental stages, and loss of fry in mutant clones causes defects in wings and compound eyes. We next modeled four out of the five missense variants found in affected individuals using fry knockin alleles. One variant behaves as a severe LoF variant, whereas two others behave as partial LoF variants. One variant does not cause any observable defect in flies, and the corresponding human variant is not confirmed to be de novo, suggesting that this is a variant of uncertain significance. In summary, our findings support that fry is required for proper development in flies and that the LoF variants in FRYL cause a dominant disorder with developmental and neurological symptoms due to haploinsufficiency.


Asunto(s)
Discapacidad Intelectual , Anomalías Musculoesqueléticas , Animales , Niño , Humanos , Discapacidades del Desarrollo/genética , Discapacidades del Desarrollo/diagnóstico , Discapacidad Intelectual/genética , Mamíferos , Anomalías Musculoesqueléticas/genética , Mutación Missense , Factores de Transcripción/genética , Drosophila
2.
Genet Med ; : 101125, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38522068

RESUMEN

PURPOSE: YKT6 plays important roles in multiple intracellular vesicle trafficking events but has not been associated with Mendelian diseases. METHODS: We report three unrelated individuals with rare homozygous missense variants in YKT6 who exhibited neurological disease with or without a progressive infantile liver disease. We modeled the variants in Drosophila. We generated wild-type and variant genomic rescue constructs (GRs) of the fly ortholog dYkt6 and compared their ability in rescuing the loss-of-function phenotypes in mutant flies. We also generated a dYkt6KozakGAL4 allele to assess the expression pattern of dYkt6. RESULTS: Two individuals are homozygous for YKT6 [NM_006555.3:c.554A>G p.(Tyr185Cys)] and exhibited normal prenatal course followed by failure to thrive, developmental delay and progressive liver disease. Haplotype analysis identified a shared homozygous region flanking the variant, suggesting a common ancestry. The third individual is homozygous for YKT6 [NM_006555.3:c.191A>G p.(Tyr64Cys)] and exhibited neurodevelopmental disorders and optic atrophy. Fly dYkt6 is essential and is expressed in the fat body (analogous to liver) and central nervous system. Wild-type GR can rescue the lethality and autophagic flux defects whereas the variants are less efficient in rescuing the phenotypes. CONCLUSION: The YKT6 variants are partial loss-of-function alleles and the p.(Tyr185Cys) is more severe than p.(Tyr64Cys).

3.
medRxiv ; 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38260438

RESUMEN

Phospholipase C isozymes (PLCs) hydrolyze phosphatidylinositol 4,5-bisphosphate into inositol 1,4,5-trisphosphate and diacylglycerol, important signaling molecules involved in many cellular processes. PLCG1 encodes the PLCγ1 isozyme that is broadly expressed. Hyperactive somatic mutations of PLCG1 are observed in multiple cancers, but only one germline variant has been reported. Here we describe three unrelated individuals with de novo heterozygous missense variants in PLCG1 (p.Asp1019Gly, p.His380Arg, and p.Asp1165Gly) who exhibit variable phenotypes including hearing loss, ocular pathology and cardiac septal defects. To model these variants in vivo, we generated the analogous variants in the Drosophila ortholog, small wing (sl). We created a null allele slT2A and assessed the expression pattern. sl is broadly expressed, including in wing discs, eye discs, and a subset of neurons and glia. Loss of sl causes wing size reductions, ectopic wing veins and supernumerary photoreceptors. We document that mutant flies exhibit a reduced lifespan and age-dependent locomotor defects. Expressing wild-type sl in slT2A mutant rescues the loss-of-function phenotypes whereas expressing the variants causes lethality. Ubiquitous overexpression of the variants also reduces viability, suggesting that the variants are toxic. Ectopic expression of an established hyperactive PLCG1 variant (p.Asp1165His) in the wing pouch causes severe wing phenotypes, resembling those observed with overexpression of the p.Asp1019Gly or p.Asp1165Gly variants, further arguing that these two are gain-of-function variants. However, the wing phenotypes associated with p.His380Arg overexpression are mild. Our data suggest that the PLCG1 de novo heterozygous missense variants are pathogenic and contribute to the features observed in the probands.

4.
Elife ; 122023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-38079206

RESUMEN

Protein UFMylation downstream of the E1 enzyme UBA5 plays essential roles in development and endoplasmic reticulum stress. Variants in the UBA5 gene are associated with developmental and epileptic encephalopathy 44 (DEE44), an autosomal recessive disorder characterized by early-onset encephalopathy, movement abnormalities, global developmental delay, intellectual disability, and seizures. DEE44 is caused by at least 12 different missense variants described as loss of function (LoF), but the relationships between genotypes and molecular or clinical phenotypes remain to be established. We developed a humanized UBA5 fly model and biochemical activity assays in order to describe in vivo and in vitro genotype-phenotype relationships across the UBA5 allelic series. In vivo, we observed a broad spectrum of phenotypes in viability, developmental timing, lifespan, locomotor activity, and bang sensitivity. A range of functional effects was also observed in vitro across comprehensive biochemical assays for protein stability, ATP binding, UFM1 activation, and UFM1 transthiolation. Importantly, there is a strong correlation between in vivo and in vitro phenotypes, establishing a classification of LoF variants into mild, intermediate, and severe allelic strengths. By systemically evaluating UBA5 variants across in vivo and in vitro platforms, this study provides a foundation for more basic and translational UBA5 research, as well as a basis for evaluating current and future individuals afflicted with this rare disease.


Although rare diseases only impact a small fraction of the population, they still affect hundreds of millions of people around the world. Many of these conditions are caused by variations in inherited genetic material, which nowadays can be readily detected using advanced sequencing technologies. However, establishing a connection between these genetic changes and the disease they cause often requires further in-depth study. One such rare inherited disorder is developmental and epileptic encephalopathy type 44 (DEE44), which is caused by genetic variations within the gene for UBA5 (short for ubiquitin-like modifier activating enzyme 5). For DEE44 to occur, both copies of the gene for UBA5, known as alleles, must contain one or more detrimental variation. Although all these variations prevent UBA5 from working correctly, the level of disruption they cause, known as allelic strength, varies between them. However, it remained unclear whether the severity of the DEE44 disease directly corresponds with the allelic strength of these variants. To answer this question, Pan et al. tested how different genetic variants found in patients with DEE44 affected the behavior and health of fruit flies. These results were then compared against in vitro biochemical assays testing how alleles containing these variants impacted the function of UBA5. When the fly gene for the enzyme was replaced with the human gene containing variations associated with DEE44, flies exhibited changes in their survival rates, developmental progress, lifespan, and neurological well-being. However, not all of the variants caused ill effects. Using this information, the patient variants were classified into three categories based on the severity of their effect: mild, intermediate, and severe. Biochemical assays supported this classification and revealed that the variants that caused more severe symptoms tended to inhibit the activity of UBA5 more significantly. Pan et al. further analyzed the nature of the variants in the patients and showed that most patients typically carried one mild and one strong variant, although some individuals did have two intermediate variants. Notably, no patients carried two severe variants. This indicates that DEE44 is the result of UBA5 only partially losing its ability to work correctly. The study by Pan et al. provides a framework for assessing the impact of genetic variants associated with DEE44, aiding the diagnosis and treatment of the disorder. However, further research involving more patients, more detailed clinical data, and testing other newly identified DEE44-causing variants is needed to solidify the correlation between allelic strength and disease severity.


Asunto(s)
Encefalopatías , Discapacidad Intelectual , Trastornos del Movimiento , Enzimas Activadoras de Ubiquitina , Humanos , Encefalopatías/genética , Discapacidad Intelectual/genética , Trastornos del Movimiento/genética , Mutación Missense , Enzimas Activadoras de Ubiquitina/genética , Enzimas Activadoras de Ubiquitina/metabolismo , Drosophila/genética , Proteínas de Drosophila/genética
5.
Exp Ther Med ; 26(5): 540, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37869636

RESUMEN

Osteoarthritis (OA) is a non-inflammatory degenerative joint disease, characterized by joint pain and stiffness. The prevalence of OA increases with age. However, the relationship between biomarkers [collagen type III α1 (COL3A1), COL5A1, COL6A2, COL12A1] and OA remains unclear. The OA subchondral bone dataset GSE51588 was downloaded from the GEO database, and the differentially expressed genes (DEGs) were screened. Weighted gene co-expression network analysis was performed, and a protein-protein interaction network was constructed and further analyzed using Cytoscape and STRING. Functional enrichment analysis was performed using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, and then Gene Set Enrichment Analysis (GSEA) was used to formulate the molecular functions and pathways based on the results of GO and KEGG analyses. Comparative Toxicogenomics Database and TargetScan were used to identify the hub-gene-related diseases and the microRNAs that regulated the central hub genes. Immunohistochemical staining was performed to confirm the expression of related proteins in OA and non-OA tissue samples. A total of 1,679 DEGs were identified. GO analysis showed that the DEGs were primarily enriched in the process of 'immune system', 'extracellular region', 'secretory granule', 'collagen-containing extracellular matrix', 'ECM-receptor, glycosaminoglycan binding' and 'systemic lupus erythematosus'. The results of GSEA were similar to those of GO and KEGG enrichment terms for DEGs. A total of 25 important modules were generated, and two core gene clusters and seven core genes were obtained (COL6A2, COL5A2, COL12A1, COL5A1, COL6A1, LUM and COL3A1). Core genes were expressed differentially between OA subchondral bone and normal tissue samples. The expression levels of COL3A1, COL5A1 and COL6A2 in OA subchondral bone tissue were higher compared with those in normal tissues, but COL12A1 expression was not significantly increased; all stained markers were highly expressed in surrounding tissues of immunohistochemical staining. In conclusion, COL3A1, COL5A1 and COL6A2 may be potential molecular biomarkers for OA.

6.
medRxiv ; 2023 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-37502976

RESUMEN

Protein UFMylation downstream of the E1 enzyme UBA5 plays essential roles in development and ER stress. Variants in the UBA5 gene are associated with developmental and epileptic encephalopathy 44 (DEE44), an autosomal recessive disorder characterized by early-onset encephalopathy, movement abnormalities, global developmental delay, intellectual disability, and seizures. DEE44 is caused by at least twelve different missense variants described as loss of function (LoF), but the relationships between genotypes and molecular or clinical phenotypes remains to be established. We developed a humanized UBA5 fly model and biochemical activity assays in order to describe in vivo and in vitro genotype-phenotype relationships across the UBA5 allelic series. In vivo, we observed a broad spectrum of phenotypes in viability, developmental timing, lifespan, locomotor activity, and bang sensitivity. A range of functional effects was also observed in vitro across comprehensive biochemical assays for protein stability, ATP binding, UFM1 activation, and UFM1 transthiolation. Importantly, there is a strong correlation between in vivo and in vitro phenotypes, establishing a classification of LoF variants into mild, intermediate, and severe allelic strengths. By systemically evaluating UBA5 variants across in vivo and in vitro platforms, this study provides a foundation for more basic and translational UBA5 research, as well as a basis for evaluating current and future individuals afflicted with this rare disease.

7.
Front Neurosci ; 17: 1137893, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36875645

RESUMEN

Neurodegenerative Diseases (NDDs) are a group of disorders that cause progressive deficits of neuronal function. Recent evidence argues that sphingolipid metabolism is affected in a surprisingly broad set of NDDs. These include some lysosomal storage diseases (LSDs), hereditary sensory and autonomous neuropathy (HSAN), hereditary spastic paraplegia (HSP), infantile neuroaxonal dystrophy (INAD), Friedreich's ataxia (FRDA), as well as some forms of amyotrophic lateral sclerosis (ALS) and Parkinson's disease (PD). Many of these diseases have been modeled in Drosophila melanogaster and are associated with elevated levels of ceramides. Similar changes have also been reported in vertebrate cells and mouse models. Here, we summarize studies using fly models and/or patient samples which demonstrate the nature of the defects in sphingolipid metabolism, the organelles that are implicated, the cell types that are initially affected, and potential therapeutics for these diseases.

8.
Brain ; 146(4): 1420-1435, 2023 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-36718090

RESUMEN

Sphingolipids are a diverse family of lipids with critical structural and signalling functions in the mammalian nervous system, where they are abundant in myelin membranes. Serine palmitoyltransferase, the enzyme that catalyses the rate-limiting reaction of sphingolipid synthesis, is composed of multiple subunits including an activating subunit, SPTSSA. Sphingolipids are both essential and cytotoxic and their synthesis must therefore be tightly regulated. Key to the homeostatic regulation are the ORMDL proteins that are bound to serine palmitoyltransferase and mediate feedback inhibition of enzymatic activity when sphingolipid levels become excessive. Exome sequencing identified potential disease-causing variants in SPTSSA in three children presenting with a complex form of hereditary spastic paraplegia. The effect of these variants on the catalytic activity and homeostatic regulation of serine palmitoyltransferase was investigated in human embryonic kidney cells, patient fibroblasts and Drosophila. Our results showed that two different pathogenic variants in SPTSSA caused a hereditary spastic paraplegia resulting in progressive motor disturbance with variable sensorineural hearing loss and language/cognitive dysfunction in three individuals. The variants in SPTSSA impaired the negative regulation of serine palmitoyltransferase by ORMDLs leading to excessive sphingolipid synthesis based on biochemical studies and in vivo studies in Drosophila. These findings support the pathogenicity of the SPTSSA variants and point to excessive sphingolipid synthesis due to impaired homeostatic regulation of serine palmitoyltransferase as responsible for defects in early brain development and function.


Asunto(s)
Paraplejía Espástica Hereditaria , Animales , Niño , Humanos , Paraplejía Espástica Hereditaria/genética , Serina C-Palmitoiltransferasa/genética , Serina C-Palmitoiltransferasa/metabolismo , Esfingolípidos/metabolismo , Membrana Celular/metabolismo , Mamíferos/metabolismo
9.
Hum Mol Genet ; 32(6): 984-997, 2023 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-36255738

RESUMEN

SUPT16H encodes the large subunit of the FAcilitate Chromatin Transcription (FACT) complex, which functions as a nucleosome organizer during transcription. We identified two individuals from unrelated families carrying de novo missense variants in SUPT16H. The probands exhibit global developmental delay, intellectual disability, epilepsy, facial dysmorphism and brain structural abnormalities. We used Drosophila to characterize two variants: p.T171I and p.G808R. Loss of the fly ortholog, dre4, causes lethality at an early developmental stage. RNAi-mediated knockdown of dre4 in either glia or neurons causes severely reduced eclosion and longevity. Tissue-specific knockdown of dre4 in the eye or wing leads to the loss of these tissues, whereas overexpression of SUPT16H has no dominant effect. Moreover, expression of the reference SUPT16H significantly rescues the loss-of-function phenotypes in the nervous system as well as wing and eye. In contrast, expression of SUPT16H p.T171I or p.G808R rescues the phenotypes poorly, indicating that the variants are partial loss-of-function alleles. While previous studies argued that the developmental arrest caused by loss of dre4 is due to impaired ecdysone production in the prothoracic gland, our data show that dre4 is required for proper cell growth and survival in multiple tissues in a cell-autonomous manner. Altogether, our data indicate that the de novo loss-of-function variants in SUPT16H are indeed associated with developmental and neurological defects observed in the probands.


Asunto(s)
Encefalopatías , Epilepsia , Discapacidad Intelectual , Trastornos del Neurodesarrollo , Animales , Supervivencia Celular , Trastornos del Neurodesarrollo/genética , Discapacidad Intelectual/genética , Mutación Missense , Drosophila
10.
Am J Hum Genet ; 109(10): 1932-1943, 2022 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-36206744

RESUMEN

Proteins containing the FERM (four-point-one, ezrin, radixin, and moesin) domain link the plasma membrane with cytoskeletal structures at specific cellular locations and have been implicated in the localization of cell-membrane-associated proteins and/or phosphoinositides. FERM domain-containing protein 5 (FRMD5) localizes at cell adherens junctions and stabilizes cell-cell contacts. To date, variants in FRMD5 have not been associated with a Mendelian disease in OMIM. Here, we describe eight probands with rare heterozygous missense variants in FRMD5 who present with developmental delay, intellectual disability, ataxia, seizures, and abnormalities of eye movement. The variants are de novo in all for whom parental testing was available (six out of eight probands), and human genetic datasets suggest that FRMD5 is intolerant to loss of function (LoF). We found that the fly ortholog of FRMD5, CG5022 (dFrmd), is expressed in the larval and adult central nervous systems where it is present in neurons but not in glia. dFrmd LoF mutant flies are viable but are extremely sensitive to heat shock, which induces severe seizures. The mutants also exhibit defective responses to light. The human FRMD5 reference (Ref) cDNA rescues the fly dFrmd LoF phenotypes. In contrast, all the FRMD5 variants tested in this study (c.340T>C, c.1051A>G, c.1053C>G, c.1054T>C, c.1045A>C, and c.1637A>G) behave as partial LoF variants. In addition, our results indicate that two variants that were tested have dominant-negative effects. In summary, the evidence supports that the observed variants in FRMD5 cause neurological symptoms in humans.


Asunto(s)
Discapacidad Intelectual , Animales , Ataxia/genética , ADN Complementario , Discapacidades del Desarrollo/genética , Movimientos Oculares , Humanos , Discapacidad Intelectual/genética , Proteínas de la Membrana , Fosfatidilinositoles , Convulsiones , Proteínas Supresoras de Tumor/genética
11.
Am J Hum Genet ; 109(4): 571-586, 2022 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-35240055

RESUMEN

TIAM Rac1-associated GEF 1 (TIAM1) regulates RAC1 signaling pathways that affect the control of neuronal morphogenesis and neurite outgrowth by modulating the actin cytoskeletal network. To date, TIAM1 has not been associated with a Mendelian disorder. Here, we describe five individuals with bi-allelic TIAM1 missense variants who have developmental delay, intellectual disability, speech delay, and seizures. Bioinformatic analyses demonstrate that these variants are rare and likely pathogenic. We found that the Drosophila ortholog of TIAM1, still life (sif), is expressed in larval and adult central nervous system (CNS) and is mainly expressed in a subset of neurons, but not in glia. Loss of sif reduces the survival rate, and the surviving adults exhibit climbing defects, are prone to severe seizures, and have a short lifespan. The TIAM1 reference (Ref) cDNA partially rescues the sif loss-of-function (LoF) phenotypes. We also assessed the function associated with three TIAM1 variants carried by two of the probands and compared them to the TIAM1 Ref cDNA function in vivo. TIAM1 p.Arg23Cys has reduced rescue ability when compared to TIAM1 Ref, suggesting that it is a partial LoF variant. In ectopic expression studies, both wild-type sif and TIAM1 Ref are toxic, whereas the three variants (p.Leu862Phe, p.Arg23Cys, and p.Gly328Val) show reduced toxicity, suggesting that they are partial LoF variants. In summary, we provide evidence that sif is important for appropriate neural function and that TIAM1 variants observed in the probands are disruptive, thus implicating loss of TIAM1 in neurological phenotypes in humans.


Asunto(s)
Discapacidad Intelectual , Alelos , Animales , Niño , ADN Complementario , Discapacidades del Desarrollo/genética , Discapacidades del Desarrollo/patología , Drosophila/genética , Humanos , Discapacidad Intelectual/genética , Discapacidad Intelectual/patología , Fenotipo , Convulsiones/genética , Proteína 1 de Invasión e Inducción de Metástasis del Linfoma-T/genética
12.
Cell Rep ; 36(9): 109644, 2021 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-34469735

RESUMEN

In holometabolous insects, metamorphic timing and body size are controlled by a neuroendocrine axis composed of the ecdysone-producing prothoracic gland (PG) and its presynaptic neurons (PGNs) producing PTTH. Although PTTH/Torso signaling is considered the primary mediator of metamorphic timing, recent studies indicate that other unidentified PGN-derived factors also affect timing. Here, we demonstrate that the receptor tyrosine kinases anaplastic lymphoma kinase (Alk) and PDGF and VEGF receptor-related (Pvr), function in coordination with PTTH/Torso signaling to regulate pupariation timing and body size. Both Alk and Pvr trigger Ras/Erk signaling in the PG to upregulate expression of ecdysone biosynthetic enzymes, while Alk also suppresses autophagy by activating phosphatidylinositol 3-kinase (PI3K)/Akt. The Alk ligand Jelly belly (Jeb) is produced by the PGNs and serves as a second PGN-derived tropic factor, while Pvr activation mainly relies on autocrine signaling by PG-derived Pvf2 and Pvf3. These findings illustrate that a combination of juxtacrine and autocrine signaling regulates metamorphic timing, the defining event of holometabolous development.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/enzimología , Glándulas Endocrinas/enzimología , Metamorfosis Biológica , Proteínas Tirosina Quinasas Receptoras/metabolismo , Animales , Animales Modificados Genéticamente , Comunicación Autocrina , Tamaño Corporal , Proteínas de Drosophila/genética , Drosophila melanogaster/embriología , Drosophila melanogaster/genética , Ecdisona/metabolismo , Glándulas Endocrinas/embriología , Receptores ErbB/genética , Receptores ErbB/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/genética , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Regulación del Desarrollo de la Expresión Génica , IMP Deshidrogenasa/genética , IMP Deshidrogenasa/metabolismo , Quinasas Janus/genética , Quinasas Janus/metabolismo , Mutación , Proteínas Tirosina Quinasas Receptoras/genética , Receptores de Péptidos de Invertebrados/genética , Receptores de Péptidos de Invertebrados/metabolismo , Factores de Transcripción STAT/genética , Factores de Transcripción STAT/metabolismo , Transducción de Señal , Factores de Tiempo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Factores de Crecimiento Endotelial Vascular/genética , Factores de Crecimiento Endotelial Vascular/metabolismo
13.
Curr Opin Insect Sci ; 43: 11-20, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32950745

RESUMEN

Ecdysteroids are a class of steroid hormones that controls molting and metamorphic transitions in Ecdysozoan species including insects, in which ecdysteroid biosynthesis and its regulation have been extensively studied. Insect ecdysteroids are produced from dietary sterols by a series of reduction-oxidation reactions in the prothoracic gland and in Drosophila they are released into the hemolymph via vesicle-mediated secretion at the time of metamorphosis. To initiate precisely controlled ecdysteroid pulses, the prothoracic gland functions as a central node integrating both intrinsic and extrinsic signals to control ecdysteroid biosynthesis and secretion. In this review, we outline recent progress in the characterization of ecdysone biosynthesis and steroid trafficking pathways and the discoveries of novel factors regulating prothoracic gland function.


Asunto(s)
Ecdisteroides/biosíntesis , Insectos/crecimiento & desarrollo , Metamorfosis Biológica/fisiología , Animales , Secreciones Corporales , Insectos/genética , Insectos/metabolismo
14.
FASEB J ; 34(6): 8265-8282, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32294302

RESUMEN

Dynamin-Related-Protein 1 (DRP1) critically regulates mitochondrial and peroxisomal fission in multicellular organisms. However, the impact of DRP1 on other organelles, especially its direct influence on ER functions remains largely unclear. Here, we report that DRP1 translocates to endoplasmic reticulum (ER) in response to ß-adrenergic stimulation. To further investigate the function of DRP1 on ER-lipid droplet (LD) dynamics and the metabolic subsequences, we generated an adipose tissue-specific DRP1 knockout model (Adipo-Drp1flx/flx ). We found that the LDs in adipose tissues of Adipo-Drp1flx/flx mice exhibited more unilocular morphology with larger sizes, and formed less multilocular structures upon cold exposure. Mechanistically, we discovered that abnormal LD morphology occurs because newly generated micro-LDs fail to dissociate from the ER due to DRP1 ablation. Conversely, the ER retention of LDs can be rescued by the overexpressed DRP1 in the adipocytes. The alteration of LD dynamics, combined with abnormal mitochondrial and autophagy functions in adipose tissue, ultimately lead to abnormalities in lipid metabolism in Adipo-Drp1flx/flx mice.


Asunto(s)
Tejido Adiposo/metabolismo , Dinaminas/metabolismo , Retículo Endoplásmico/metabolismo , Gotas Lipídicas/metabolismo , Células 3T3 , Adipocitos/metabolismo , Animales , Autofagia/fisiología , Línea Celular , Células HEK293 , Humanos , Metabolismo de los Lípidos/fisiología , Masculino , Ratones , Mitocondrias/metabolismo , Dinámicas Mitocondriales/fisiología , Proteínas Mitocondriales/metabolismo
15.
Genetics ; 213(4): 1447-1464, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31585954

RESUMEN

Correct scaling of body and organ size is crucial for proper development, and the survival of all organisms. Perturbations in circulating hormones, including insulins and steroids, are largely responsible for changing body size in response to both genetic and environmental factors. Such perturbations typically produce adults whose organs and appendages scale proportionately with final size. The identity of additional factors that might contribute to scaling of organs and appendages with body size is unknown. Here, we report that loss-of-function mutations in DrosophilaActivinß (Actß), a member of the TGF-ß superfamily, lead to the production of small larvae/pupae and undersized rare adult escapers. Morphometric measurements of escaper adult appendage size (wings and legs), as well as heads, thoraxes, and abdomens, reveal a disproportional reduction in abdominal size compared to other tissues. Similar size measurements of selected Actß mutant larval tissues demonstrate that somatic muscle size is disproportionately smaller when compared to the fat body, salivary glands, prothoracic glands, imaginal discs, and brain. We also show that Actß control of body size is dependent on canonical signaling through the transcription-factor dSmad2 and that it modulates the growth rate, but not feeding behavior, during the third-instar period. Tissue- and cell-specific knockdown, and overexpression studies, reveal that motoneuron-derived Actß is essential for regulating proper body size and tissue scaling. These studies suggest that, unlike in vertebrates, where Myostatin and certain other Activin-like factors act as systemic negative regulators of muscle mass, in Drosophila, Actß is a positive regulator of muscle mass that is directly delivered to muscles by motoneurons. We discuss the importance of these findings in coordinating proportional scaling of insect muscle mass to appendage size.


Asunto(s)
Tamaño Corporal , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/anatomía & histología , Drosophila melanogaster/metabolismo , Neuronas Motoras/metabolismo , Envejecimiento , Animales , Núcleo Celular/metabolismo , Drosophila melanogaster/crecimiento & desarrollo , Femenino , Larva/anatomía & histología , Larva/crecimiento & desarrollo , Masculino , Músculos/anatomía & histología , Mutación/genética , Tamaño de los Órganos , Pupa/anatomía & histología , Transducción de Señal
16.
Curr Biol ; 29(17): 2840-2851.e4, 2019 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-31422886

RESUMEN

Properly timed production of steroid hormones by endocrine tissues regulates juvenile-to-adult transitions in both mammals (puberty) and holometabolous insects (metamorphosis). Nutritional conditions influence the temporal control of the transition, but the mechanisms responsible are ill defined. Here we demonstrate that autophagy acts as an endocrine organ-specific, nutritionally regulated gating mechanism to help ensure productive metamorphosis in Drosophila. Autophagy in the endocrine organ is specifically stimulated by nutrient restriction at the early, but not the late, third-instar larva stage. The timing of autophagy induction correlates with the nutritional checkpoints, which inhibit precocious metamorphosis during nutrient restriction in undersized larvae. Suppression of autophagy causes dysregulated pupariation of starved larvae, which leads to pupal lethality, whereas forced autophagy induction results in developmental delay/arrest in well-fed animals. Induction of autophagy disrupts production of the steroid hormone ecdysone at the time of pupariation not by destruction of hormone biosynthetic capacity but rather by limiting the availability of the steroid hormone precursor cholesterol in the endocrine cells via a lipophagy mechanism. Interestingly, autophagy in the endocrine organ functions by interacting with the endolysosome system, yet shows multiple features not fully consistent with a canonical autophagy process. Taken together, our findings demonstrate an autophagy mechanism in endocrine cells that helps shape the nutritional checkpoints and guarantee a successful juvenile-to-adult transition in animals confronting nutritional stress.


Asunto(s)
Fenómenos Fisiológicos Nutricionales de los Animales , Autofagia , Drosophila melanogaster/crecimiento & desarrollo , Metamorfosis Biológica/fisiología , Animales , Femenino , Larva/crecimiento & desarrollo , Masculino , Pupa/crecimiento & desarrollo
17.
Curr Biol ; 29(5): R161-R164, 2019 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-30836086

RESUMEN

Insect metamorphosis and mammalian puberty exhibit similar design principles, but the conservation of molecular components has not been documented. A new study demonstrates that the insect neuropeptide allatostatin A and its receptor AstAR1 activate a neuroendocrine signaling cascade that initiates metamorphosis, similar to the way in which their mammalian orthologs Kisspeptin and KISS1R induce puberty.


Asunto(s)
Drosophila , Kisspeptinas , Animales , Evolución Biológica , Sistemas Neurosecretores , Receptores de Kisspeptina-1 , Transducción de Señal
18.
Life Sci Alliance ; 1(6): e201800216, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30515478

RESUMEN

Developmental transitions are often triggered by a neuroendocrine axis and can be contingent upon multiple organs achieving sufficient growth and maturation. How the neurodendocrine axis senses the size and maturity of peripheral organs is not known. In Drosophila larvae, metamorphosis is triggered by a sharp increase in the level of the steroid hormone ecdysone, secreted by the prothoracic gland (PG). Here, we show that the BMP2/4 ortholog Dpp can function as a systemic signal to regulate developmental timing. Dpp from peripheral tissues, mostly imaginal discs, can reach the PG and inhibit ecdysone biosynthesis. As the discs grow, reduced Dpp signaling in the PG is observed, consistent with the possibility that Dpp functions in a checkpoint mechanism that prevents metamorphosis when growth is insufficient. Indeed, upon starvation early in the third larval instar, reducing Dpp signaling in the PG abrogates the critical-weight checkpoint which normally prevents pupariation under these conditions. We suggest that increased local trapping of morphogen within tissues as they grow would reduce circulating levels and hence provide a systemic readout of their growth status.

19.
Development ; 145(6)2018 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-29467242

RESUMEN

Adult size and fitness are controlled by a combination of genetics and environmental cues. In Drosophila, growth is confined to the larval phase and final body size is impacted by the duration of this phase, which is under neuroendocrine control. The neuropeptide prothoracicotropic hormone (PTTH) has been proposed to play a central role in controlling the length of the larval phase through regulation of ecdysone production, a steroid hormone that initiates larval molting and metamorphosis. Here, we test this by examining the consequences of null mutations in the Ptth gene for Drosophila development. Loss of Ptth causes several developmental defects, including a delay in developmental timing, increase in critical weight, loss of coordination between body and imaginal disc growth, and reduced adult survival in suboptimal environmental conditions such as nutritional deprivation or high population density. These defects are caused by a decrease in ecdysone production associated with altered transcription of ecdysone biosynthetic genes. Therefore, the PTTH signal contributes to coordination between environmental cues and the developmental program to ensure individual fitness and survival.


Asunto(s)
Adaptación Fisiológica/genética , Plasticidad de la Célula/fisiología , Drosophila/crecimiento & desarrollo , Hormonas de Insectos/fisiología , Adaptación Fisiológica/fisiología , Animales , Plasticidad de la Célula/genética , Señales (Psicología) , Drosophila/genética , Drosophila/fisiología , Proteínas de Drosophila/metabolismo , Ecdisona/biosíntesis , Ambiente , Inmunohistoquímica , Hormonas de Insectos/genética , Larva/metabolismo , Larva/fisiología , Metamorfosis Biológica/fisiología , Mutagénesis , Reacción en Cadena en Tiempo Real de la Polimerasa , Transducción de Señal
20.
Oncotarget ; 7(52): 86225-86238, 2016 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-27863391

RESUMEN

Tumor metastasis is a major cause leading to the deaths of cancer patients. Nordihydroguaiaretic acid (NDGA) is a natural product that has been demonstrated to show therapeutic values in multiple diseases. In this study, we report that NDGA can inhibit cell migration and tumor metastasis via a novel mechanism. NDGA suppresses NRP1 function by downregulating its expression, which leads to attenuated cell motility, cell adhesion to ECM and FAK signaling in cancer cells. Moreover, due to its cross-cell type activity on NRP1 suppression, NDGA also impairs angiogenesis function of endothelial cells and fibronectin assembly by fibroblasts, both of which are critical to promote metastasis. Based on these comprehensive effects, NDGA effectively suppresses tumor metastasis in nude mice model. Our findings reveal a novel mechanism underlying the anti-metastasis function of NDGA and indicate the potential value of NDGA in NRP1 targeting therapy for selected subtypes of cancer.


Asunto(s)
Masoprocol/farmacología , Neuropilina-1/antagonistas & inhibidores , Neoplasias de la Próstata/tratamiento farmacológico , Animales , Adhesión Celular/efectos de los fármacos , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Células Endoteliales/efectos de los fármacos , Fibroblastos/efectos de los fármacos , Proteína-Tirosina Quinasas de Adhesión Focal/antagonistas & inhibidores , Humanos , Masculino , Ratones , Metástasis de la Neoplasia , Neoplasias de la Próstata/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...