Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cereb Cortex ; 34(1)2024 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-37997466

RESUMEN

Blood proteins are emerging as potential biomarkers for mild traumatic brain injury (mTBI). Molecular pathology of mTBI underscores the critical roles of neuronal injury, neuroinflammation, and vascular health in disease progression. However, the temporal profile of blood biomarkers associated with the aforementioned molecular pathology after CT-negative mTBI, their diagnostic and prognostic potential, and their utility in monitoring white matter integrity and progressive brain atrophy remain unclear. Thus, we investigated serum biomarkers and neuroimaging in a longitudinal cohort, including 103 CT-negative mTBI patients and 66 matched healthy controls (HCs). Angiogenic biomarker vascular endothelial growth factor (VEGF) exhibited the highest area under the curve of 0.88 in identifying patients from HCs. Inflammatory biomarker interleukin-1ß and neuronal cell body injury biomarker ubiquitin carboxyl-terminal hydrolase L1 were elevated in acute-stage patients and associated with deterioration of cognitive function from acute-stage to 6-12 mo post-injury period. Notably, axonal injury biomarker neurofilament light (NfL) was elevated in acute-stage patients, with higher levels associated with impaired white matter integrity in acute-stage and progressive gray and white matter atrophy from 3- to 6-12 mo post-injury period. Collectively, our findings emphasized the potential clinical value of serum biomarkers, particularly NfL and VEGF, in diagnosing mTBI and monitoring disease progression.


Asunto(s)
Conmoción Encefálica , Humanos , Conmoción Encefálica/diagnóstico por imagen , Factor A de Crecimiento Endotelial Vascular , Proteínas de Neurofilamentos , Progresión de la Enfermedad , Biomarcadores , Atrofia/patología , Tomografía Computarizada por Rayos X , Encéfalo/diagnóstico por imagen , Encéfalo/patología
2.
Cereb Cortex ; 33(12): 7477-7488, 2023 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-36928310

RESUMEN

Mild traumatic brain injury (mTBI) disrupts the integrity of white matter microstructure, which affects brain functional connectivity supporting cognitive function. Although the relationship between structural and functional connectivity (SC and FC), here called SC-FC coupling, has been studied on global level in brain disorders, the long-term disruption of SC-FC coupling in mTBI at regional scale was still unclear. The current study investigated the alteration pattern of regional SC-FC coupling in 104 acute mTBI patients (41 with 6-12 months of follow-up) and 56 healthy controls (HCs). SC and FC networks were constructed to measure regional, intra-network, and inter-network SC-FC coupling. Compared with HCs, acute mTBI exhibited altered SC-FC coupling of the sensorimotor network (SMN). The coupling laterality indicators of the SMN can identify mTBI from controls. The persistent SC-FC decoupling of the SMN and the additional decoupling of the default mode network (DMN) were observed in chronic mTBI. Crucially, decoupling of the SMN and DMN predicted better cognitive outcomes. The findings revealed the SC-FC coupling alternations exhibited hierarchical trend originating from the sensorimotor cortex to high-order cognitive regions with the progression of mTBI. The regional and hierarchical SC-FC coupling may be a prognostic biomarker to provide insights into the pathophysiology mechanism of mTBI.


Asunto(s)
Conmoción Encefálica , Disfunción Cognitiva , Humanos , Conmoción Encefálica/complicaciones , Conmoción Encefálica/diagnóstico por imagen , Imagen por Resonancia Magnética , Red Nerviosa/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Mapeo Encefálico
3.
Cereb Cortex ; 33(11): 6620-6632, 2023 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-36610729

RESUMEN

Traumatic brain injury (TBI) disrupt the coordinated activity of triple-network and produce impairments across several cognitive domains. The triple-network model posits a key role of the salience network (SN) that regulates interactions with the central executive network (CEN) and default mode network (DMN). However, the aberrant dynamic interactions among triple-network and associations with neurobehavioral symptoms in mild TBI was still unclear. In present study, we used brain network interaction index (NII) and dynamic functional connectivity to examine the time-varying cross-network interactions among the triple-network in 109 acute patients, 41 chronic patients, and 65 healthy controls. Dynamic cross-network interactions were significantly increased and more variable in mild TBI compared to controls. Crucially, mild TBI exhibited an increased NII as enhanced integrations between the SN and CEN while reduced coupling of the SN with DMN. The increased NII also implied much severer and multiple domains of cognitive impairments at both acute and chronic mild TBI. Abnormities in time-varying engagement of triple-network is a clinically relevant neurobiological signature of psychopathology in mild TBI. The findings provided align with and advance an emerging perspective on the importance of aberrant brain dynamics associated with highly disparate cognitive and behavioral outcomes in trauma.


Asunto(s)
Conmoción Encefálica , Disfunción Cognitiva , Humanos , Conmoción Encefálica/complicaciones , Conmoción Encefálica/diagnóstico por imagen , Imagen por Resonancia Magnética , Encéfalo/diagnóstico por imagen , Mapeo Encefálico , Red Nerviosa , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/etiología , Disfunción Cognitiva/patología
4.
J Neurotrauma ; 40(1-2): 63-73, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35747994

RESUMEN

Mild traumatic brain injury (mTBI)-associated damage to hub regions can lead to disrupted modular structures of functional brain networks and may result in widespread cognitive and behavioral deficits. The spatial layout of brain connections and modules is essential for understanding the reorganization of brain networks to trauma. We investigated the roles of hubs in inter-subnetwork information coordination and integration using participation coefficients (PCs) in 74 patients with acute mTBI and 51 matched healthy controls. In some brain networks, such as default mode network (DMN) and frontoparietal network (FPN), mild TBI patients had decreased PC levels, while this measure was saliently increased in patients in other networks, such as the visual network. The hub disruption index was defined as the gradient of a straight line fitted to scatterplots of individual mTBI in participation coefficient versus mean participation coefficient of healthy groups. There was a trend of radical reorganization of some efficient "hub" nodes in patients (κ = -0.15), compared with controls (κ close to 0). The PC of brain hubs can also differentiate mTBI patients from controls with an 88% accuracy, and decreased PC levels in FPN can predict patient' s worse cognitive information processing speed (r = 0.36, p < 0.002) and working memory performance (r = 0.35, p < 0.002). Reduced PC within the DMN was associated with patients' complaints of post-concussion symptoms (r = -0.35, p < 0.002). This evidence suggests a trend of spatial transition of hub profiles in acute mTBI, and graph metrics of PC measures can be used as potential diagnostic biomarkers.


Asunto(s)
Conmoción Encefálica , Lesiones Encefálicas , Humanos , Conmoción Encefálica/diagnóstico por imagen , Mapeo Encefálico , Imagen por Resonancia Magnética , Encéfalo/diagnóstico por imagen , Red Nerviosa/diagnóstico por imagen
5.
Reprod Biol ; 22(4): 100702, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36327671

RESUMEN

Circular RNA (circRNA) have been shown to exert vital functions in the pathological progressions of ovarian cancer (OC). Herein, this study aimed to investigate the role and mechanisms of circ_0015756 in OC progression. Levels of circ_0015756, microRNA (miR)- 145-5p and phosphoserine aminotransferase 1 (PSAT1) were detected using quantitative real-time polymerase chain reaction, Western blot or immunohistochemistry assays. Cell proliferation, apoptosis, migration and invasion were determined using cell counting kit-8, 5-Ethynyl-2'-Deoxyuridine (Edu) incorporation, flow cytometry, transwell and Western blot assays. The binding interaction between miR-145-5p and circ_0015756 or PSAT1 was confirmed by bioinformatics prediction and dual-luciferase reporter assay. Tumor formation assay in nude mice was performed to determine the tumor growth in vivo. Circ_0015756 was highly expressed in OC tissues and cells. Knockdown of circ_0015756 suppressed cancer cell growth, migration and invasion in vitro, as well as impeded tumor growth in vivo. In a mechanical study, circ_0015756 directly bound to miR-145-5p, and inhibition of miR-145-5p reversed the effects of circ_0015756 knockdown on OC cells. Moreover, miR-145-5p directly targeted PSAT1, and miR-145-5p weakened OC cell growth, migration and invasion via targeting PSAT1. Importantly, further studies confirmed that circ_0015756 could indirectly regulate PSAT1 expression via sponging miR-145-5p. In all, circ_0015756 accelerated OC tumorigenesis through regulating miR-145-5p/PSAT1 axis, providing a new therapeutic target for OC.


Asunto(s)
MicroARNs , Neoplasias Ováricas , ARN Circular , Transaminasas , Animales , Femenino , Humanos , Ratones , Carcinogénesis , Proliferación Celular , Ratones Desnudos , MicroARNs/genética , Neoplasias Ováricas/genética , ARN Circular/genética , Transaminasas/genética
6.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 47(8): 1016-1024, 2022 Aug 28.
Artículo en Inglés, Chino | MEDLINE | ID: mdl-36097769

RESUMEN

OBJECTIVES: The patients with mild traumatic brain injury (mTBI) accounts for more than 80% of the patients with brain injury. Most patients with mTBI have no abnormalities in CT examination. Therefore, most patients choose to self-care and recover rather than seeking medical treatment. In fact, mTBI may result in persistent cognitive decline and neurobehavioral dysfunction. In addition, changes occurred in neurochemistry, metabolism, and cells after injury may cause changes in cerebral blood flow (CBF), which is one of the causes of secondary injury and slow brain repair. This study aims to evaluate the changes of CBF with the progression of the disease in patients with mTBI based on arterial spin labeling (ASL) magnetic resonance imaging technology. METHODS: In the outpatient or emergency department of the Second Affiliated Hospital of Wenzhou Medical University, 43 mTBI patients were collected as an mTBI group, and 43 normal subjects with age, gender, and education level matching served as a control group. They all received clinical neuropsychology and cognitive function evaluation and magnetic resonance imaging. In the mTBI group, 22 subjects were followed up at acute phase, 1 month, 3 months, and 12 months. Based on the control group, the abnormal regions of CBF in the whole brain of mTBI patients were analyzed. The abnormal regions were taken as the regions of interest (ROI). The correlation of the values of the CBF in ROIs with clinical indications, cognitive function, and the changes of CBF in ROI at each time point during the follow-up were analyzed. RESULTS: Compared with the control group, the CBF in the bilateral dorsolateral superior frontal gyrus and auxiliary motor areas in the cortical region, as well as the right putamen, caudate nucleus, globus pallidus, and parahippocampus in the subcutaneous regions in the acute phase of the mTBI group were significantly increased (all P<0.01, TFCE-FWE correction). The analysis results of correlation of CBF with neuropsychology and cognitive domain showed that in the mTBI group, whole brain (r=0.528, P<0.001), right caudate nucleus (r=0.512, P<0.001), putamen (r=0.486, P<0.001), and globus pallidus (r=0.426, P=0.006) values of the were positively correlated with Backward Digit Span Test (BDST) score (reflectting working memory ability), and the right globus pallidus CBF was negatively correlated with the Post-Traumatic Stress Disorder Cheeklist-CivilianVersion (PCL-C) score (r=-0.402, P=0.010). Moreover, the follow-up study showed that abnormal CBF in these areas had not been restored. The correlation of CBF was negatively correlated with PCL-C and BDST at 1 months, 3 months, and 12 months (all P>0.05). CONCLUSIONS: The elevated CBF value is one of the stress characteristics of brain injury in the mTBI patients at the acute phase. There is abnormal elevation of CBF values in multiple cortex or subcortical areas. Multi-time point studies show that there is no obvious change of CBF in abnormal areas, suggesting that potential clinical treatment is urgently needed for the mTBI patients.


Asunto(s)
Conmoción Encefálica , Lesiones Encefálicas , Conmoción Encefálica/complicaciones , Conmoción Encefálica/diagnóstico por imagen , Circulación Cerebrovascular/fisiología , Estudios de Seguimiento , Humanos , Imagen por Resonancia Magnética/métodos , Espectroscopía de Resonancia Magnética , Marcadores de Spin
7.
Zhonghua Yi Xue Za Zhi ; 85(2): 92-5, 2005 Jan 12.
Artículo en Chino | MEDLINE | ID: mdl-15774213

RESUMEN

OBJECTIVE: To assess the safety and efficacy of gabapentin in treatment of refractory epilepsy. METHODS: Sixty-six patients with refractory epilepsy were treated with gabapentin 200 mg/d and 72 patients with placebo, totally 138 patients in five hospitals in different cities in China. Double-blind study was performed to observe the times of seizure, and Mini-Mental State Examination (MMSE) and Activities of Daily Life (ADL) assessment were conducted every 4 weeks. RESULTS: In comparison with the control group, the seizure times at any time point in the GB group all decreased with significant differences at the 12th and 20th weeks. The significant efficacy rates, with the seizure times decreasing by more than 75%, in the gabapentin group were higher than those in the control group, with significant differences in the 4, 8, 16, and 20th weeks. Both the MMSE scores of the 2 groups were raised with a significant difference between the 2 groups at the 16 weeks. There was no significant difference in ADL between these 2 groups. No serious side effect was found in these 2 groups. CONCLUSION: Gabapentin at a dosage of 1200 mg/d is safe and effective in treatment of epilepsy.


Asunto(s)
Aminas/uso terapéutico , Anticonvulsivantes/uso terapéutico , Ácidos Ciclohexanocarboxílicos/uso terapéutico , Epilepsia Generalizada/tratamiento farmacológico , Ácido gamma-Aminobutírico/uso terapéutico , Adolescente , Adulto , Anciano , Método Doble Ciego , Femenino , Gabapentina , Humanos , Masculino , Persona de Mediana Edad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...