Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Acta Pharmacol Sin ; 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38858494

RESUMEN

T cell engaging bispecific antibodies (TCBs) have recently become significant in cancer treatment. In this study we developed MSLN490, a novel TCB designed to target mesothelin (MSLN), a glycosylphosphatidylinositol (GPI)-linked glycoprotein highly expressed in various cancers, and evaluated its efficacy against solid tumors. CDR walking and phage display techniques were used to improve affinity of the parental antibody M912, resulting in a pool of antibodies with different affinities to MSLN. From this pool, various bispecific antibodies (BsAbs) were assembled. Notably, MSLN490 with its IgG-[L]-scFv structure displayed remarkable anti-tumor activity against MSLN-expressing tumors (EC50: 0.16 pM in HT-29-hMSLN cells). Furthermore, MSLN490 remained effective even in the presence of non-membrane-anchored MSLN (soluble MSLN). Moreover, the anti-tumor activity of MSLN490 was enhanced when combined with either Atezolizumab or TAA × CD28 BsAbs. Notably, a synergistic effect was observed between MSLN490 and paclitaxel, as paclitaxel disrupted the immunosuppressive microenvironment within solid tumors, enhancing immune cells infiltration and improved anti-tumor efficacy. Overall, MSLN490 exhibits robust anti-tumor activity, resilience to soluble MSLN interference, and enhanced anti-tumor effects when combined with other therapies, offering a promising future for the treatment of a variety of solid tumors. This study provides a strong foundation for further exploration of MSLN490's clinical potential.

3.
Heliyon ; 9(7): e17960, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37456045

RESUMEN

CD22, as the B-cell malignancies antigen, has been targeted for immunotherapies through CAR-T cells, antibody-drug conjugates (ADCs) and immunotoxins via interaction of antibodies with binding domains on the receptor. We hypothesized that avidity and binding domain of antibody to target cells may have significant impact on the biological function in tumor immunotherapy, and T cell-engaging bispecific antibody (TCB) targeting CD22 could be used in the therapy of hematologic malignancies. So, to address the question, we utilized the information of six previously reported CD22 mAbs to generate CD22-TCBs with different avidity to different domains on CD22 protein. We found that the avidity of CD22-TCBs to protein was not consistent with the avidity to target cells, indicating that TCBs had different binding mode to the protein and cells. In vitro results indicated that CD22-TCBs mediated cytotoxicity depended on the avidity of antibodies to target cells rather than to protein. Moreover, distal binding domain of the antigen contributed to the avidity and biological activity of IgG-[L]-scfv-like CD22-TCBs. The T cells' proliferation, activation, cytotoxicity as well as cytokine release were compared, and G5/44 BsAb was selected for further in vivo assessment in anti-tumor activity. In vivo results demonstrated that CD22-TCB (G5/44 BsAb) significantly inhibited the tumors growth in mice. All these data suggested that CD22-TCBs could be developed as a promising candidate for B-cell malignancies therapy through optimizing the design with avidity and binding domain to CD22 target in consideration.

4.
Chem Biodivers ; 20(8): e202300532, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37369824

RESUMEN

This study was aimed to isolate bioactive compounds from the fermentation products of Aspergillus terreus, which could inhibit NS3 protease of hepatitis C virus (HCV). The bioactive compounds were isolated by reverse-phase silica-gel column chromatography, semi-preparative reversed-phase, and Sephadex LH-20, and then their structures were elucidated through spectroscopic analysis. As a result, two small molecule compounds were isolated. Compound 1 was identified as a new benzaldehyde, (E)-2,4-dihydroxy-6-propenylbenzaldehyde. Compound 2 was identified as pleurone, which was obtained from microorganisms for the first time. Their inhibitory activities against HCV NS3 protease (IC50 ) were 32.6 µM and 78.9 µM, respectively. This study provided a new option for the development of anti-HCV drugs.


Asunto(s)
Antivirales , Serina , Antivirales/farmacología , Antivirales/química , Proteínas no Estructurales Virales , Hepacivirus , Inhibidores de Proteasas/química
5.
Acta Pharm Sin B ; 12(4): 1928-1942, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35847491

RESUMEN

T cell engaging bispecific antibody (TCB) is an effective immunotherapy for cancer treatment. Through co-targeting CD3 and tumor-associated antigen (TAA), TCB can redirect CD3+ T cells to eliminate tumor cells regardless of the specificity of T cell receptor. Tissue factor (TF) is a TAA that involved in tumor progression. Here, we designed and characterized a novel TCB targeting TF (TF-TCB) for the treatment of TF-positive tumors. In vitro, robust T cell activation, tumor cell lysis and T cell proliferation were induced by TF-TCB. The tumor cell lysis activity was dependent upon both CD3 and TF binding moieties of the TF-TCB, and was related to TF expression level of tumor cells. In vivo, in both tumor cell/human peripheral blood mononuclear cells (PBMC) co-grafting model and established tumor models with poor T cell infiltration, tumor growth was strongly inhibited by TF-TCB. T cell infiltration into tumors was induced during the treatment. Furthermore, efficacy of TF-TCB was further improved by combination with immune checkpoint inhibitors. For the first time, our results validated the feasibility of using TF as a target for TCB and highlighted the potential for TF-TCB to demonstrate efficacy in solid tumor treatment.

6.
J Nanobiotechnology ; 20(1): 243, 2022 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-35614462

RESUMEN

BACKGROUND: Triple-negative breast cancer (TNBC) is more prone to distant metastasis and visceral recurrence in comparison to other breast cancer subtypes, and is related to dismal prognosis. Nevertheless, TNBC has an undesirable response to targeted therapies. Therefore, to tackle the huge challenges in the diagnosis and treatment of TNBC, Nectin-4 was selected as a theranostic target because it was recently found to be highly expressed in TNBC. We developed anti-Nectin-4 monoclonal antibody (mAbNectin-4)-based theranostic pair, 99mTc-HYNIC-mAbNectin-4 and mAbNectin-4-ICG. 99mTc-HYNIC-mAbNectin-4 was applied to conduct immuno-single photon emission computed tomography (SPECT) for TNBC diagnosis and classification, and mAbNectin-4-ICG to mediate photothermal therapy (PTT) for relieving TNBC tumor growth. METHODS: Nectin-4 expression levels of breast cancer cells (MDA-MB-468: TNBC cells; and MCF-7, non-TNBC cells) were proved by western blot, flow cytometry, and immunofluorescence imagning. Cell uptake assays, SPECT imaging, and biodistribution were performed to evaluate Nectin-4 targeting of 99mTc-HYNIC-mAbNectin-4. A photothermal agent (PTA) mAbNectin-4-ICG was generated and characterized. In vitro photothermal therapy (PTT) mediated by mAbNectin-4-ICG was conducted under an 808 nm laser. Fluorescence (FL) imaging was performed for mAbNectin-4-ICG mapping in vivo. In vivo PTT treatment effects on TNBC tumors and corresponding systematic toxicity were evaluated. RESULTS: Nectin-4 is overexpressed in MDA-MB-468 TNBC cells, which could specifically uptake 99mTc-HYNIC-mAbNectin-4 with high targeting in vitro. The corresponding immunoSPECT imaging demonstrated exceptional performance in TNBC diagnosis and molecular classification. mAbNectin-4-ICG exhibited favourable biocompatibility, photothermal effects, and Nectin-4 targeting. FL imaging mapped biodistribution of mAbNectin-4-ICG with excellent tumor-targeting and retention in vivo. Moreover, mAbNectin-4-ICG-mediated PTT provided advanced TNBC tumor destruction efficiency with low systematic toxicity. CONCLUSION: mAbNectin-4-based radioimmunoimaging provides visualization tools for the stratification and diagnosis for TNBC, and the corresponding mAbNectin-4-mediated PTT shows a powerful anti-tumor effect. Our findings demonstrate that this Nectin-4 targeting strategy offers a simple theranostic platform for TNBC.


Asunto(s)
Nectinas , Terapia Fototérmica , Tomografía Computarizada por Tomografía Computarizada de Emisión de Fotón Único , Neoplasias de la Mama Triple Negativas , Anticuerpos Monoclonales/uso terapéutico , Línea Celular Tumoral , Humanos , Hidrazinas/uso terapéutico , Inmunoconjugados/uso terapéutico , Verde de Indocianina , Nectinas/inmunología , Nectinas/metabolismo , Ácidos Nicotínicos/uso terapéutico , Terapia Fototérmica/métodos , Tomografía Computarizada por Tomografía Computarizada de Emisión de Fotón Único/métodos , Distribución Tisular , Neoplasias de la Mama Triple Negativas/diagnóstico por imagen , Neoplasias de la Mama Triple Negativas/terapia
7.
Front Pharmacol ; 13: 803059, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35281893

RESUMEN

Background: Colorectal cancer is a commonly diagnosed cancer with high mortality worldwide. Postoperative recidivation and metastasis still are the main challenges in clinical treatments. Thus, it is urgent to develop new therapies against colorectal cancer. Epithelial Cell Adhesion Molecule (EpCAM) is overexpressed in colorectal cancer cells and strongly associated with cancer development. Bispecific antibody (BsAb) is a kind of promising immunotherapy, which could recognize T cells and cancer cells simultaneously to achieve the anti-tumor effects. Methods: A bispecific antibody targeting EpCAM and CD3 with IgG format was genereated by split intein based on the Bispecific Antibody by Protein Splicing" platform. In vitro, the affinity of CD3×EpCAM BsAb was determined by Biolayer interferometry, its cytotoxicity was detected by LDH release assay, T cell recruitment and activation was detected by Flow Cytometry. In vivo, its pharmacokinetic parameters were detected, and anti-tumor effects were evaluated on the tumor cell xenograft mouse model. Results: The results showed that the CD3×EpCAM BsAb could activate and recruit T cells via binding colorectal cells and T cells, which could lead to more potent cytotoxicity to various colorectal cell lines than its parent EpCAM monoclonal antibody (mAb) in vitro. The CD3×EpCAM BsAb had similar pharmacokinetic parameters with EpCAM mAb and inhibits tumor growth on the SW480 tumor cell xenograft mouse model. Conclusion: The CD3×EpCAM BsAb could be a promising candidate for colorectal cancer treatment.

8.
Appl Microbiol Biotechnol ; 106(1): 161-171, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34882254

RESUMEN

Rapid and efficient bispecific antibody (BsAb) production for industrial applications is still facing many challenges. We reported a technology platform for generating bispecific IgG antibodies, "Bispecific Antibody by Protein Trans-splicing (BAPTS)." While the "BAPTS" method has shown potential in high-throughput screening of BsAbs, further understanding and optimizing the methodology is desirable. A large number of BsAbs were selected to illustrate the conversion efficiency and kinetics parameters. The temperature of reaction makes no significant influence in conversion efficiency, which can reach more than 70% within 2 h, and CD3 × HER2 BsAb can reach 90%. By fitting trans-splicing reaction to single-component exponential decay curves, the apparent first-order rate constants at a series of temperatures were determined. The rate constant ranges from 0.02 to 0.11 min-1 at 37 °C, which is a high rate reported for the protein trans-splicing reaction (PTS). The reaction process is activated rapidly with activation energy of 8.9 kcal·mol-1 (CD3 × HER2) and 5.2 kcal·mol-1 (CD3 × EGFR). The BsAbs generated by "BAPTS" technology not only had the similar post-translation modifications to the parental antibodies, but also demonstrated excellent in vitro and in vivo bioactivity. The kinetics parameters and activation energy of the reaction illustrate feasible for high-throughput screening and industrial applications using the "BAPTS" approach. KEY POINTS: • The trans-splicing reaction of Npu DnaE intein in "BAPTS" platform is a rapid process with low reaction activation and high rate. • The BsAb generated by "BAPTS" remained effective in tumor cell killing. • The kinetics parameters and activation energy of the reaction illustrate feasible for high-throughput screening and industrial applications using the "BAPTS" approach.


Asunto(s)
Anticuerpos Biespecíficos , Inteínas , Inmunoglobulina G , Cinética , Empalme de Proteína
9.
Biomedicines ; 9(8)2021 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-34440263

RESUMEN

Lewis Y antigen, a glycan highly expressed on most epithelial cancers, was targeted for cancer treatment but lacked satisfactory results in some intractable and refractory cancers. Thus, it is highly desirable to develop an effective therapy against these cancers, hopefully based on this target. In this work, we constructed a novel T cell-engaging bispecific antibody targeting Lewis Y and CD3 (m3s193 BsAb) with the IgG-[L]-scfv format. In vitro activity of m3s193 BsAb was evaluated by affinity assay to target cells, cytotoxicity assay, cytokines releasing assay, and T cells proliferation and recruiting assays. Anti-tumor activity against gastric cancer was evaluated in vivo by subcutaneous huPBMCs/tumor cells co-grafting model and huPBMCs intravenous injecting model. In vitro, m3s193 BsAb appeared to have a high binding affinity to Lewis Y positive cells and Jurkat cells. The BsAb showed stronger activity than its parent mAb in T cell recruiting, activation, proliferation, cytokine release, and cytotoxicity. In vivo, m3s193 BsAb not only demonstrated higher therapeutic efficacy in the huPBMCs/tumor co-grafting gastric carcinoma model than the parent mAb but also eliminated tumors in the model of intravenous injection with huPBMCs. Strong anti-tumor activity of m3s193 BsAb revealed that Lewis Y could be targeted in T cell-engaging BsAb for gastric cancer therapy.

10.
Biomedicines ; 9(6)2021 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-34204931

RESUMEN

Epidermal growth factor receptor variant III (EGFRvIII) is highly and specifically expressed in a subset of lethal glioblastoma (GBM), making the receptor a unique therapeutic target for GBM. Recently, bispecific antibodies (BsAbs) have shown exciting clinical benefits in cancer immunotherapy. Here, we report remarkable results for GBM treatment with a BsAb constructed by the "BAPTS" method. The BsAb was characterized through LC/MS, SEC-HPLC, and SPR. Furthermore, the BsAb was evaluated in vitro for bioactivities through FACS, antigen-dependent T-cell-mediated cytotoxicity, and a cytokine secretion assay, as well as in vivo for antitumor activity and pharmacokinetic (PK) parameters through immunodeficient NOD/SCID and BALB/c mouse models. The results indicated that the EGFRvIII-BsAb eliminated EGFRvIII-positive GBM cells by recruiting and stimulating effector T cells secreting cytotoxic cytokines that killed GBM cells in vitro. The results demonstrated the antitumor potential and long circulation time of EGFRvIII-BsAb in NOD/SCID mice bearing de2-7 subcutaneously heterotopic transplantation tumors and BALB/c mice. In conclusion, our experiments in both in vitro and in vivo have shown the remarkable antitumor activities of EGFRvIII-BsAb, highlighting its potential in clinical applications for the treatment of GBM. Additional merits, including a long circulation time and low immunogenicity, have also made the novel BsAb a promising therapeutic candidate.

11.
J Exp Clin Cancer Res ; 39(1): 87, 2020 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-32398042

RESUMEN

BACKGROUND: Prolactin receptor (PRLR) is highly expressed in a subset of human breast cancer and prostate cancer, which makes it a potential target for cancer treatment. In clinical trials, the blockade of PRLR was shown to be safe but with poor efficacy. It is therefore urgent to develop new therapies against PRLR target. Bispecific antibodies (BsAbs) could guide immune cells toward tumor cells, and produced remarkable effects in some cancers. METHODS: In this study, a bispecific antibody targeting both tumor antigen PRLR and T cell surface CD3 antigen (PRLR-DbsAb) was constructed by split intein mediated protein transsplicing (BAPTS) system for the first time. Its binding activity was determined by Biacore and Flow cytometry, and target-dependent T cell mediated cytotoxicity was detected using LDH release assay. ELISA was utilized to study the secretion of cytokines by immune cells. Subcutaneous tumor mouse models were used to analyze the in vivo anti-tumor effects of PRLR-DbsAb. RESULTS: PRLR-DbsAb in vitro could recruit and activate T cells to promote the release of Th1 cytokines IFN- γ and TNF- α, which could kill PRLR expressed breast cancer cells. In xenograft models with breast cancer cell line T47D, NOD/SCID mice intraperitoneally injected with PRLR-DbsAb exhibited significant inhibition of tumor growth and a longer survival compared to mice treated with PRLR monoclonal antibody (PRLR mAb). CONCLUSIONS: Both in vitro and in vivo experiments showed PRLR-DbsAb had a potential therapy of cancer treatment potential therapy for cancer. Immunotherapy may be a promising treatment against the tumor target of PRLR.


Asunto(s)
Anticuerpos Biespecíficos/farmacología , Neoplasias de la Mama/terapia , Complejo CD3/inmunología , Receptores de Prolactina/inmunología , Animales , Neoplasias de la Mama/inmunología , Línea Celular Tumoral , Modelos Animales de Enfermedad , Femenino , Humanos , Células Jurkat , Activación de Linfocitos , Células MCF-7 , Ratones , Ratones Endogámicos NOD , Ratones SCID , Persona de Mediana Edad , Receptores de Prolactina/biosíntesis , Linfocitos T/inmunología , Transfección , Ensayos Antitumor por Modelo de Xenoinjerto
12.
Methods ; 154: 32-37, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30308314

RESUMEN

High product purity, preserving natural IgG architecture, and excellent production efficiency are highly desirable in bispecific antibody manufacturing. We have reported a platform called Bispecific Antibody by Protein Trans-Splicing (BAPTS) to synthesize BsAbs with natural human IgG structure and no chain mispairing. In the method, two antibody fragments carrying different target-specificities are separately expressed in mammalian cells and subsequently fused to form BsAbs by utilizing the trans-splicing property of the split intein Npu DnaE. The hinge region of antibody, a region with less functional impact, is selected for conjugating the two fragments. The method involves the following steps: (i) constructing five plasmids coding antibody components; (ii) separately expressing and purifying two antibody fragments A and B. Fragment A contains one Fab, "Knobs-into-Holes" mutations in the CH3 domain and NPU DnaEC. Fragment B contains another Fab and NPU DnaEN; (iii) mixing of fragments A and B under permissive reducing conditions in vitro to enable trans-splicing reaction; (iv) removing the reductant to allow re-oxidation of disulfide bonds; (v) isolating BsAb product from unreacted precursors by affinity chromatography. The method allows correct assembly of two heavy and two light chains to form bispecific IgG antibodies in natural structure with no synthetic linkers. No chain mispairing was observed in the product by UPLC-MASS. In addition, the observed kinetics and low reaction activation energy confirmed that the trans-splicing is thermodynamically favored reaction. The BAPTS technology is feasible for industrial applications.


Asunto(s)
Anticuerpos Biespecíficos , Inmunoglobulina G , Inteínas , Ingeniería de Proteínas/métodos , Animales , Línea Celular , Cricetulus , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...