Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38405869

RESUMEN

Non-typhoidal Salmonella enterica cause an estimated 1 million cases of gastroenteritis annually in the United States. These serovars use secreted protein effectors to mimic and reprogram host cellular functions. We previously discovered that the secreted effector SarA (Salmonella anti-inflammatory response activator; also known as SteE) was required for increased intracellular replication of S. Typhimurium and production of the anti-inflammatory cytokine interleukin-10 (IL-10). SarA facilitates phosphorylation of STAT3 through a region of homology with the host cytokine receptor gp130. Here, we demonstrate that a single amino acid difference between SarA and gp130 is critical for the anti-inflammatory bias of SarA-STAT3 signaling. An isoleucine at the pY+1 position of the YxxQ motif in SarA (which binds the SH2 domain in STAT3) causes increased STAT3 phosphorylation and expression of anti-inflammatory target genes. This isoleucine, completely conserved in ~4000 Salmonella isolates, renders SarA a better substrate for tyrosine phosphorylation by GSK-3. GSK-3 is canonically a serine/threonine kinase that nonetheless undergoes tyrosine autophosphorylation at a motif that has an invariant isoleucine at the pY+1 position. Our results provide a molecular basis for how a Salmonella secreted effector achieves supraphysiological levels of STAT3 activation to control host genes during infection.

2.
Curr Opin Microbiol ; 73: 102285, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36857844

RESUMEN

Despite macrophages representing professional immune cells that are integral to the host defences against microbial threats, several intracellular bacteria not only infect, but survive, replicate and often persist in these cells. This is perhaps possible because not all macrophages are the same. Instead, macrophages are loosely divided into two classes: the M1 'classically activated' pro-inflammatory subset and the M2 'alternatively activated' cells that are generally anti-inflammatory and infection-permissive. In this review, we summarise recent findings explaining how several intracellular pathogens, often using secreted effectors, rewire host circuitry in favour of an anti-inflammatory niche. A common theme is the phosphorylation and activation of the signal transducer and activator of transcription-3 (STAT3) transcription factor. We describe and compare the diverse mechanisms employed and reflect how such non-canonical processes may have evolved to circumvent regulation by the host, providing a potent means by which different pathogens manipulate the cells they infect.


Asunto(s)
Activación de Macrófagos , Macrófagos , Factor de Transcripción STAT3 , Bacterias , Macrófagos/microbiología
3.
Cell Host Microbe ; 27(1): 41-53.e6, 2020 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-31862381

RESUMEN

Many Gram-negative bacterial pathogens antagonize anti-bacterial immunity through translocated effector proteins that inhibit pro-inflammatory signaling. In addition, the intracellular pathogen Salmonella enterica serovar Typhimurium initiates an anti-inflammatory transcriptional response in macrophages through its effector protein SteE. However, the target(s) and molecular mechanism of SteE remain unknown. Here, we demonstrate that SteE converts both the amino acid and substrate specificity of the host pleiotropic serine/threonine kinase GSK3. SteE itself is a substrate of GSK3, and phosphorylation of SteE is required for its activity. Remarkably, phosphorylated SteE then forces GSK3 to phosphorylate the non-canonical substrate signal transducer and activator of transcription 3 (STAT3) on tyrosine-705. This results in STAT3 activation, which along with GSK3 is required for SteE-mediated upregulation of the anti-inflammatory M2 macrophage marker interleukin-4Rα (IL-4Rα). Overall, the conversion of GSK3 to a tyrosine-directed kinase represents a tightly regulated event that enables a bacterial virulence protein to reprogram innate immune signaling and establish an anti-inflammatory environment.


Asunto(s)
Glucógeno Sintasa Quinasa 3/metabolismo , Macrófagos/microbiología , Proteínas Serina-Treonina Quinasas/metabolismo , Factor de Transcripción STAT3/metabolismo , Salmonella typhimurium , Animales , Proteínas Bacterianas/metabolismo , Células HEK293 , Células HeLa , Interacciones Microbiota-Huesped/inmunología , Humanos , Interleucina-4/metabolismo , Activación de Macrófagos , Macrófagos/metabolismo , Ratones , Ratones Endogámicos C57BL , Proteínas Tirosina Quinasas/metabolismo , Salmonella typhimurium/inmunología , Salmonella typhimurium/metabolismo , Salmonella typhimurium/patogenicidad , Virulencia/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...