Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chemosphere ; 352: 141260, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38272137

RESUMEN

The existence of the artificial sweetener acesulfame (ACE) in quantities of significance can negatively impact water quality, and its consumption has been associated with deleterious health effects. The present investigation explores the efficacy of heat-activated sodium persulfate (SPS) for eliminating ACE. The complete degradation of 0.50 mg L-1 of ACE was achieved within 45 min under a reaction temperature of 50 °C and 100 mg L-1 of SPS. The impact of thermal decomposition on ACE at a temperature of 60 °C was negligible. This study considers several factors, such as the SPS and ACE loading, the reaction temperature, the initial pH, and the water matrix of the reactor. The results indicate that the method's efficiency is positively correlated with higher initial concentrations of SPS, whereas it is inversely associated with the initial concentration of ACE. Furthermore, higher reaction temperatures and acidic initial pH levels promote the degradation of acesulfame. At the same time, certain constituents of the water matrix, such as humic acid, chlorides, and bicarbonates, can hinder the degradation process. Additionally, the data from LC-QToF-MS analysis of the samples were used to investigate transformation through suspect and non-target screening approaches. Overall, ACE's eight transformation products (TPs) were detected, and a potential ACE decomposition pathway was proposed. The concentration of TPs followed a volcano curve, decreasing in long treatment times. The ecotoxicity of ACE and its identified TPs was predicted using the ECOSAR software. The majority of TPs exhibited not harmful values.


Asunto(s)
Compuestos de Sodio , Sulfatos , Contaminantes Químicos del Agua , Oxidación-Reducción , Contaminantes Químicos del Agua/análisis , Calor , Temperatura , Cinética , Edulcorantes/toxicidad , Edulcorantes/análisis
2.
Sci Rep ; 14(1): 1390, 2024 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-38228659

RESUMEN

The Balkans are considered a major glacial refugium where flora and fauna survived glacial periods and repopulated the rest of Europe during interglacials. While it is also thought to have harboured Pleistocene human populations, evidence linking human activity, paleoenvironmental indicators and a secure temporal placement to glacial periods is scant. Here, we present the first intra-tooth multi-isotope analysis for the European straight-tusked elephant Palaeoloxodon antiquus, on an adult male individual excavated in association with lithic artefacts at the MIS 12 site Marathousa 1 (Megalopolis basin, Greece). The studied find also exhibits anthropogenic modifications, providing direct evidence of hominin presence. We employed strontium, carbon and oxygen isotope analysis on enamel bioapatite to investigate its foraging and mobility behaviour, using a sequential sampling strategy along the tooth growth axis of the third upper molar, to assess ecological changes during the last decade of life. We found a geographically restricted range, in a C3-dominated open woodland environment, and relatively stable conditions over the examined timeframe. Our results show that, despite the severity of the MIS 12 glacial, the Megalopolis basin sustained a mesic habitat, sufficient plant cover and limited seasonal fluctuations in resource availability, pointing to its role as a glacial refugium for both fauna and hominins.


Asunto(s)
Hominidae , Refugio de Fauna , Animales , Humanos , Grecia , Ecosistema , Peninsula Balcánica
3.
Water Res ; 235: 119864, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-36944304

RESUMEN

Depending on the ambient pH, ionizable substances are present in varying proportions in their neutral or charged form. The extent to which these two chemical species contribute to the pH-dependant toxicity of ionizable chemicals and whether intracellular ion trapping has a decisive influence in this context is controversially discussed. Against this background, we determined the acute toxicity of 24 ionizable substances at up to 4 different pH values on the embryonic development of the zebrafish, Danio rerio, and supplemented this dataset with additional data from the literature. The LC50 for some substances (diclofenac, propranolol, fluoxetine) differed by a factor of even >103 between pH5 and pH9. To simulate the toxicity of 12 acids and 12 bases, six models to calculate a pH-dependant logD value as a proxy for the uptake of potentially toxic molecules were created based on different premises for the trans-membrane passage and toxic action of neutral and ionic species, and their abilities to explain the real LC50 data set were assessed. Using this approach, we were able to show that both neutral and charged species are almost certainly taken up into cells according to their logD-based distribution, and that both species exert toxicity. Since two of the models that assume all intracellular molecules to be neutral overestimated the real toxicity, it must be concluded, that the toxic effect of a single charged intracellularly present molecule is, on the average, lower than that of a single neutral molecule. Furthermore, it was possible to attribute differences in toxicity at different pH values for these 24 ionizable substances to the respective deltas in logD at these pH levels with high accuracy, enabling particularly a full logD-based model on the basis of logPow as a membrane passage descriptor to be used for predicting potential toxicities in worst-case scenarios from existing experimental studies, as stipulated in the process of registration of chemicals and the definition of Environmental Quality Standards (EQS).


Asunto(s)
Propranolol , Pez Cebra , Animales , Concentración de Iones de Hidrógeno , Propranolol/toxicidad , Iones
4.
Molecules ; 27(14)2022 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-35889316

RESUMEN

Honey is a highly consumed commodity due to its potential health benefits upon certain consumption, resulting in a high market price. This fact indicates the need to protect honey from fraudulent acts by delivering comprehensive analytical methodologies. In this study, targeted, suspect and non-targeted metabolomic workflows were applied to identify botanical origin markers of Greek honey. Blossom honey samples (n = 62) and the unifloral fir (n = 10), oak (n = 24), pine (n = 39) and thyme (n = 34) honeys were analyzed using an ultra-high-performance liquid chromatography hybrid quadrupole time-of-flight mass spectrometry (UHPLC-q-TOF-MS) system. Several potential authenticity markers were revealed from the application of different metabolomic workflows. In detail, based on quantitative targeted analysis, three blossom honey markers were found, namely, galangin, pinocembrin and chrysin, while gallic acid concentration was found to be significantly higher in oak honey. Using suspect screening workflow, 12 additional bioactive compounds were identified and semi-quantified, achieving comprehensive metabolomic honey characterization. Lastly, by combining non-targeted screening with advanced chemometrics, it was possible to discriminate thyme from blossom honey and develop binary discriminatory models with high predictive power. In conclusion, a holistic approach to assessing the botanical origin of Greek honey is presented, highlighting the complementarity of the three applied metabolomic approaches.


Asunto(s)
Miel , Thymus (Planta) , Biomarcadores , Cromatografía Líquida de Alta Presión/métodos , Cromatografía Liquida , Grecia , Miel/análisis , Espectrometría de Masas/métodos , Fenoles/análisis , Thymus (Planta)/química
5.
J Hum Evol ; 162: 103104, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34883260

RESUMEN

In this article, we describe an almost complete macaque mandible from the Middle Pleistocene locality Marathousa 1 in the Megalopolis Basin of southern Greece. The mandible belonged to a male individual of advanced ontogenetic age and of estimated body mass ∼13 kg. Comparative metric analysis of its teeth permits its attribution to the Barbary macaque Macaca sylvanus, a species that was geographically widely distributed in Western Eurasia during the Plio-Pleistocene. The dental dimensions of the Marathousa 1 macaque fit better within the variation of the Early Pleistocene M. s. florentina and the Middle to Late Pleistocene M. s. pliocena rather than with the extant representative M. s. sylvanus. Moreover, principal component analysis reveals a better match with M. s. pliocena. However, because no clear-cut diagnostic criteria have been defined to differentiate these European fossil subspecies, we attribute the Marathousa 1 specimen to M. s. cf. pliocena, in agreement with the chronology of the locality. Previously known only from the Early Pleistocene of Greece by some isolated teeth, this is the first record of Macaca in the Middle Pleistocene of the country and one of very few in the eastern sector of the peri-Mediterranean region. We discuss the presence of macaques in the paleolake environment of Marathousa 1, as well as their predation risks from both carnivores and hominins present at the locality.


Asunto(s)
Cercopithecidae , Hominidae , Animales , Fósiles , Grecia , Macaca , Masculino , Primates
6.
Molecules ; 26(9)2021 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-34066694

RESUMEN

Honey consumption is attributed to potentially advantageous effects on human health due to its antioxidant capacity as well as anti-inflammatory and antimicrobial activity, which are mainly related to phenolic compound content. Phenolic compounds are secondary metabolites of plants, and their content in honey is primarily affected by the botanical and geographical origin. In this study, a high-resolution mass spectrometry (HRMS) method was applied to determine the phenolic profile of various honey matrices and investigate authenticity markers. A fruitful sample set was collected, including honey from 10 different botanical sources (n = 51) originating from Greece and Poland. Generic liquid-liquid extraction using ethyl acetate as the extractant was used to apply targeted and non-targeted workflows simultaneously. The method was fully validated according to the Eurachem guidelines, and it demonstrated high accuracy, precision, and sensitivity resulting in the detection of 11 target analytes in the samples. Suspect screening identified 16 bioactive compounds in at least one sample, with abscisic acid isomers being the most abundant in arbutus honey. Importantly, 10 markers related to honey geographical origin were revealed through non-targeted screening and the application of advanced chemometric tools. In conclusion, authenticity markers and discrimination patterns were emerged using targeted and non-targeted workflows, indicating the impact of this study on food authenticity and metabolomic fields.


Asunto(s)
Antioxidantes/análisis , Benzaldehídos/análisis , Cinamatos/análisis , Flavonoides/análisis , Miel/análisis , Hidroxibenzoatos/análisis , Espectrometría de Masas/métodos , Metaboloma , Metabolómica/métodos , Antioxidantes/aislamiento & purificación , Benzaldehídos/aislamiento & purificación , Cinamatos/aislamiento & purificación , Exactitud de los Datos , Flavonoides/aislamiento & purificación , Grecia , Humanos , Hidroxibenzoatos/aislamiento & purificación , Polonia , Sensibilidad y Especificidad
7.
Nature ; 512(7514): 306-9, 2014 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-25143113

RESUMEN

The timing of Neanderthal disappearance and the extent to which they overlapped with the earliest incoming anatomically modern humans (AMHs) in Eurasia are key questions in palaeoanthropology. Determining the spatiotemporal relationship between the two populations is crucial if we are to understand the processes, timing and reasons leading to the disappearance of Neanderthals and the likelihood of cultural and genetic exchange. Serious technical challenges, however, have hindered reliable dating of the period, as the radiocarbon method reaches its limit at ∼50,000 years ago. Here we apply improved accelerator mass spectrometry (14)C techniques to construct robust chronologies from 40 key Mousterian and Neanderthal archaeological sites, ranging from Russia to Spain. Bayesian age modelling was used to generate probability distribution functions to determine the latest appearance date. We show that the Mousterian ended by 41,030-39,260 calibrated years bp (at 95.4% probability) across Europe. We also demonstrate that succeeding 'transitional' archaeological industries, one of which has been linked with Neanderthals (Châtelperronian), end at a similar time. Our data indicate that the disappearance of Neanderthals occurred at different times in different regions. Comparing the data with results obtained from the earliest dated AMH sites in Europe, associated with the Uluzzian technocomplex, allows us to quantify the temporal overlap between the two human groups. The results reveal a significant overlap of 2,600-5,400 years (at 95.4% probability). This has important implications for models seeking to explain the cultural, technological and biological elements involved in the replacement of Neanderthals by AMHs. A mosaic of populations in Europe during the Middle to Upper Palaeolithic transition suggests that there was ample time for the transmission of cultural and symbolic behaviours, as well as possible genetic exchanges, between the two groups.


Asunto(s)
Aculturación/historia , Extinción Biológica , Geografía , Hombre de Neandertal , Análisis Espacio-Temporal , Animales , Teorema de Bayes , Historia Antigua , Humanos , Espectrometría de Masas , Hombre de Neandertal/genética , Hombre de Neandertal/fisiología , Datación Radiométrica , Factores de Tiempo , Comportamiento del Uso de la Herramienta , Incertidumbre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...