Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Foods ; 13(2)2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38254579

RESUMEN

The use of food waste as a rearing substrate to grow insects is an ecofriendly and sustainable alternative to food waste disposal. In the present research, Hermetia illucens prepupae were reared with a standard diet, different food waste-based diets based on vegetables, fruits, and meat, and a mixed one, where the previous three components were present equally. The demineralization and deproteination of the prepupae allowed for the obtainment of chitin that was then deacetylated to produce chitosan. Also, the bleaching of chitosan was attempted for further purification. The yield of the different reactions was investigated, and the infrared spectra of the obtained materials were analyzed to obtain information on the quantity and acetylation degree trend of the chitin and chitosan as a function of the diet. The possibility to slightly modulate the yield and acetylation degree of both biopolymers thanks to the specific diet was enlightened. Interestingly, the standard diet resulted in the highest fraction of chitin having the highest acetylation degree, and in the highest fraction of chitosan having the lowest acetylation degree.

2.
J Funct Biomater ; 14(11)2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37998118

RESUMEN

In this study, we have developed innovative polymer nanocomposites by integrating magnesium-aluminum layered double hydroxide (LDH)-based nanocarriers modified with functional molecules into a fully biobased poly(lactic acid)/poly(butylene succinate-co-adipate) (PLA/PBSA) matrix. These LDH-based hybrid host-guest systems contain bioactive compounds like rosmarinic acid, ferulic acid, and glycyrrhetinic acid, known for their antioxidant, antimicrobial, and anti-inflammatory properties. The bioactive molecules can be gradually released from the nanocarriers over time, allowing for sustained and controlled delivery in various applications, such as active packaging or cosmetics. The morphological analysis of the polymer composites, prepared using a discontinuous mechanical mixer, revealed the presence of macroaggregates and nano-lamellae at the polymer interface. This resulted in an enhanced water vapor permeability compared to the original blend. Furthermore, the migration kinetics of active molecules from the thin films confirmed a controlled release mechanism based on their immobilization within the lamellar system. Scaling-up experiments evaluated the materials' morphology and mechanical and thermal properties. Remarkably, stretching deformation and a higher shear rate during the mixing process enhanced the dispersion and distribution of the nanocarriers, as confirmed by the favorable mechanical properties of the materials.

3.
Polymers (Basel) ; 15(19)2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-37836080

RESUMEN

Currently, biobased epoxy resins derived from plant oils and natural fibers are available on the market and are a promising substitute for fossil-based products. The purpose of this work is to investigate novel lightweight thermoset fiber-reinforced composites with extremely high biobased content. Paying attention to the biobased content, following a cascade pathway, many trials were carried out with different types of resins and hardeners to select the best ones. The most promising formulations were then used to produce flax fiber reinforced composites by vacuum bagging process. The main biocomposite properties such as tensile, bending, and impact properties as well as the individuation of their glass transition temperatures (by DSC) were assessed. Three biocomposite systems were investigated with biobased content ranging from 60 to 91%, obtaining an elastic modulus that varied from 2.7 to 6.3 GPa, a flexural strength from 23 to 108.5 MPa, and Charpy impact strength from 11.9 to 12.2 kJ/m2. The properties reached by the new biocomposites are very encouraging; in fact, their stiffness vs. lightweight (calculated by the E/ρ3 ratio) is comparable to some typical epoxy-glass composites.

4.
Int J Mol Sci ; 24(11)2023 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-37298394

RESUMEN

Three-dimensional scaffold-based culture has been increasingly gaining influence in oncology as a therapeutic strategy for tumors with a high relapse percentage. This study aims to evaluate electrospun poly(ε-caprolactone) (PCL) and poly(lactic acid) (PLA) scaffolds to create a 3D model of colorectal adenocarcinoma. Specifically, the physico-mechanical and morphological properties of PCL and PLA electrospun fiber meshes collected at different drum velocities, i.e., 500 rpm, 1000 rpm and 2500 rpm, were assessed. Fiber size, mesh porosity, pore size distribution, water contact angle and tensile mechanical properties were investigated. Caco-2 cells were cultured on the produced PCL and PLA scaffolds for 7 days, demonstrating good cell viability and metabolic activity in all the scaffolds. A cross-analysis of the cell-scaffold interactions with morphological, mechanical and surface characterizations of the different electrospun fiber meshes was carried out, showing an opposite trend of cell metabolic activity in PLA and PCL scaffolds regardless of the fiber alignment, which increased in PLA and decreased in PCL. The best samples for Caco-2 cell culture were PCL500 (randomly oriented fibers) and PLA2500 (aligned fibers). Caco-2 cells had the highest metabolic activity in these scaffolds, with Young's moduli in the range of 8.6-21.9 MPa. PCL500 showed Young's modulus and strain at break close to those of the large intestine. Advancements in 3D in vitro models of colorectal adenocarcinoma could move forward the development of therapies for this cancer.


Asunto(s)
Adenocarcinoma , Neoplasias Colorrectales , Humanos , Ingeniería de Tejidos/métodos , Células CACO-2 , Recurrencia Local de Neoplasia , Poliésteres , Andamios del Tejido
5.
Molecules ; 27(23)2022 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-36500725

RESUMEN

To improve the capability of non-woven polypropylene-based fabric (NWF-PP) used for face mask production to retain active biomolecules such as polyphenols, the surface functionalization of NWF-PP-directly cut from face masks-was carried out by employing cold plasma with oxygen. The nature/structure of the functional groups, as well as the degree of functionalization, were evaluated by ATR-FTIR and XPS by varying the experimental conditions (generator power, treatment time, and oxygen flow). The effects of plasma activation on mechanical and morphological characteristics were evaluated by stress-strain measurements and SEM analysis. The ability of functionalized NWF-PP to firmly anchor polyphenols extracted from cloves was estimated by ATR-FTIR analysis, IR imaging, extractions in physiological solution, and OIT analysis (before and after extraction), as well as by SEM analysis. All the results obtained converge in showing that, although the plasma treatment causes changes-not only on the surface-with certain detriment to the mechanical performance of the NWF-PP, the incorporated functionalities are able to retain/anchor the active molecules extracted from the cloves, thus stabilizing the treated surfaces against thermo-oxidation even after prolonged extraction.


Asunto(s)
Gases em Plasma , Polifenoles , Polipropilenos/química , Oxígeno
6.
Polymers (Basel) ; 14(23)2022 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-36501606

RESUMEN

Chitin nanofibrils (CN) can be obtained from crustaceans and fungal sources and can be used for preparing coatings for bioplastic films, that are fundamental for developing a safe and sustainable biodegradable food packaging. Coatings with different concentrations of CN from shrimps were applied on different bioplastic substrates, like Poly (butylene succinate-co-adipate)/Poly(3-hydroxybutyrate-co-3-hydroxyvalerate (PBSA/PHBV) blend, Polybutylene succinate (PBS), and Polybutylene adipate terephthalate/Poly(lactic acid) (PBAT/PLA) blend, but the adhesion to the substrates was scarce. On the contrary, the fungal-based CN showed a better adhesion. Additionally, it was found that the use of an additive based on oligomeric lactic acid was useful to prepare a coating with an improved adhesion to bioplastics. The gas barrier properties to oxygen and water vapour of coated and un-coated films were measured, revealing an improvement of these properties thanks to applied coatings, especially towards the oxygen. Antimicrobial properties and biodegradation capacity were also evaluated revealing an antibacterial effect of the coatings that did not significantly interfere with their biodegradability. The results are discussed and interpreted considering the correlation between composition and macromolecular structures with the observed functional properties.

7.
Polymers (Basel) ; 14(11)2022 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-35683945

RESUMEN

The paper tissue industry is a constantly evolving sector that supplies markets that require products with different specific properties. In order to meet the demand of functional properties, ensuring a green approach at the same time, research on bio-coatings has been very active in recent decades. The attention dedicated to research on functional properties has not been given to the study of the morphological and mechanical properties of the final products. This paper studied the effect of two representative bio-based coatings on paper tissue. Coatings based on chitin nanofibrils or polyphenols were sprayed on paper tissues to provide them, respectively, with antibacterial and antioxidant activity. The chemical structure of the obtained samples was preliminarily compared by ATR-FTIR before and after their application. Coatings were applied on paper tissues and, after drying, their homogeneity was investigated by ATR-FTIR on different surface areas. Antimicrobial and antioxidant properties were found for chitin nanofibrils- and polyphenols-treated paper tissues, respectively. The mechanical properties of treated and untreated paper tissues were studied, considering as a reference the same tissue paper sample treated only with water. Different mechanical tests were performed on tissues, including penetration, tensile, and tearing tests in two perpendicular directions, to consider the anisotropy of the produced tissues for industrial applications. The morphology of uncoated and coated paper tissues was analysed by field emission scanning electron microscopy. Results from mechanical properties evidenced a correlation between morphological and mechanical changes. The addition of polyphenols resulted in a reduction in mechanical resistance, while the addition of chitin enhanced this property. This study evidenced the different effects produced by two novel coatings on paper tissues for personal care in terms of properties and structure.

8.
Sci Rep ; 12(1): 6613, 2022 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-35459772

RESUMEN

Due to their properties and applications, the growing demand for chitin and chitosan has stimulated the market to find more sustainable alternatives to the current commercial source (crustaceans). Bioconverter insects, such as Hermetia illucens, are the appropriate candidates, as chitin is a side stream of insect farms for feed applications. This is the first report on production and characterization of chitin and chitosan from different biomasses derived from H. illucens, valorizing the overproduced larvae in feed applications, the pupal exuviae and the dead adults. Pupal exuviae are the best biomass, both for chitin and chitosan yields and for their abundance and easy supply from insect farms. Fourier-transform infrared spectroscopy, X-ray diffraction and scanning electron microscope analysis revealed the similarity of insect-derived polymers to commercial ones in terms of purity and structural morphology, and therefore their suitability for industrial and biomedical applications. Its fibrillary nature makes H. illucens chitin suitable for producing fibrous manufacts after conversion to chitin nanofibrils, particularly adults-derived chitin, because of its high crystallinity. A great versatility emerged from the evaluation of the physicochemical properties of chitosan obtained from H. illucens, which presented a lower viscosity-average molecular weight and a high deacetylation degree, fostering its putative antimicrobial properties.


Asunto(s)
Quitosano , Dípteros , Animales , Quitina/química , Quitosano/química , Insectos , Larva , Pupa
9.
Polymers (Basel) ; 13(21)2021 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-34771197

RESUMEN

The development of new bio-based coating materials to be applied on cellulosic and plastic based substrates, with improved performances compared to currently available products and at the same time with improved sustainable end of life options, is a challenge of our times. Enabling cellulose or bioplastics with proper functional coatings, based on biopolymer and functional materials deriving from agro-food waste streams, will improve their performance, allowing them to effectively replace fossil products in the personal care, tableware and food packaging sectors. To achieve these challenging objectives some molecules can be used in wet or solid coating formulations, e.g., cutin as a hydrophobic water- and grease-repellent coating, polysaccharides such as chitosan-chitin as an antimicrobial coating, and proteins as a gas barrier. This review collects the available knowledge on functional coatings with a focus on the raw materials used and methods of dispersion/application. It considers, in addition, the correlation with the desired final properties of the applied coatings, thus discussing their potential.

10.
Nanoscale ; 13(19): 8795-8805, 2021 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-34014243

RESUMEN

Small iron oxide nanoparticles (IONPs) were synthesised in water via co-precipitation by quenching particle growth after the desired magnetic iron oxide phase formed. This was achieved in a millifluidic multistage flow reactor by precisely timed addition of an acidic solution. IONPs (≤5 nm), a suitable size for positive T1 magnetic resonance imaging (MRI) contrast agents, were obtained and stabilised continuously. This novel flow chemistry approach facilitates a reproducible and scalable production, which is a crucial paradigm shift to utilise IONPs as contrast agents and replace currently used Gd complexes. Acid addition had to be timed carefully, as the inverse spinel structure formed within seconds after initiating the co-precipitation. Late quenching allowed IONPs to grow larger than 5 nm, whereas premature acid addition yielded undesired oxide phases. Use of a flow reactor was not only essential for scalability, but also to synthesise monodisperse and non-agglomerated small IONPs as (i) co-precipitation and acid addition occurred at homogenous environment due to accurate temperature control and rapid mixing and (ii) quenching of particle growth was possible at the optimum time, i.e., a few seconds after initiating co-precipitation. In addition to the timing of growth quenching, the effect of temperature and dextran present during co-precipitation on the final particle size was investigated. This approach differs from small IONP syntheses in batch utilising either growth inhibitors (which likely leads to impurities) or high temperature methods in organic solvents. Furthermore, this continuous synthesis enables the low-cost (<£10 per g) and large-scale production of highly stable small IONPs without the use of toxic reagents. The flow-synthesised small IONPs showed high T1 contrast enhancement, with transversal relaxivity (r2) reduced to 20.5 mM-1 s-1 and longitudinal relaxivity (r1) higher than 10 mM-1 s-1, which is among the highest values reported for water-based IONP synthesis.

11.
Nanoscale Adv ; 3(7): 2039-2055, 2021 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-36133085

RESUMEN

Ionic gelation is commonly used to generate nanogels but often results in poor control over size and polydispersity. In this work we present a novel approach to the continuous manufacture of protein-loaded chitosan nanogels using microfluidics whereby we demonstrate high control and uniformity of the product characteristics. Specifically, a coaxial flow reactor (CFR) was employed to control the synthesis of the nanogels, comprising an inner microcapillary of internal diameter (ID) 0.595 mm and a larger outer glass tube of ID 1.6 mm. The CFR successfully facilitated the ionic gelation process via chitosan and lysozyme flowing through the inner microcapillary, while cross-linkers sodium tripolyphosphate (TPP) and 1-ethyl-2-(3-dimethylaminopropyl)-carbodiimide (EDC) flowed through the larger outer tube. In conjunction with the CFR, a four-factor three-level face-centered central composite design (CCD) was used to ascertain the relationship between various factors involved in nanogel production and their responses. Specifically, four factors including chitosan concentration, TPP concentration, flow ratio and lysozyme concentration were investigated for their effects on three responses (size, polydispersity index (PDI) and encapsulation efficiency (% EE)). A desirability function was applied to identify the optimum parameters to formulate nanogels in the CFR with ideal characteristics. Nanogels prepared using the optimal parameters were successfully produced in the nanoparticle range at 84 ± 4 nm, showing a high encapsulation efficiency of 94.6 ± 2.9% and a high monodispersity of 0.26 ± 0.01. The lysis activity of the protein lysozyme was significantly enhanced in the nanogels at 157.6% in comparison to lysozyme alone. Overall, the study has demonstrated that the CFR is a viable method for the synthesis of functional nanogels containing bioactive molecules.

12.
RSC Adv ; 11(29): 17694-17703, 2021 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-35480211

RESUMEN

The interaction of methylene blue and crystal violet dyes with a range of gold nanoparticles (AuNPs), gold nanoclusters and gold/silver nanoclusters is reported. It is found that 20 nm citrate-capped AuNPs have strong interactions with these two dyes that result in red-shifted absorption peaks in their electronic absorption spectra. Transmission electron microscopy and dynamic light scattering measurements show that this can be attributed to these AuNPs combining into large agglomerates. Eventually, precipitation is observed. The agglomeration process is triggered when the dye reaches or exceeds a threshold concentration and then does not stop until all the AuNPs have agglomerated into large particles and precipitated. Calculations suggest that the threshold concentration corresponds to having sufficient dye molecules to form a monolayer on the surface of AuNPs. We also observe similar red-shifting in the absorption peaks of the electronic absorption spectra of 11-50 nm citrate-capped AuNPs formed by both single step and seeded growth methods. No such interactions were observed in the UV-vis spectra of the dyes with Tris-capped AuNPs, gold nanoclusters or gold/silver nanoclusters.

13.
ACS Appl Mater Interfaces ; 12(43): 49021-49029, 2020 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-33073567

RESUMEN

Thiolate-gold nanoclusters have various applications. However, most of the synthesis methods require prolonged synthesis times from several hours to days. In the present study, we report a rapid synthesis method for [Au25(Cys)18] nanoclusters and their application for photobactericidal enhancement. For [Au25(Cys)18] synthesis, we employed a tube-in-tube membrane reactor using CO as a reducing agent at elevated temperatures. This approach allows continuous generation of high-quality [Au25(Cys)18] within 3 min. Photobactericidal tests against Staphylococcus aureus showed that crystal violet-treated polymer did not have photobactericidal activity, but addition of [Au25(Cys)18] in the treated polymer demonstrated a potent photobactericidal activity at a low white light flux, resulting in >4.29 log reduction in viable bacteria numbers. Steady-state and time-resolved photoluminescence spectroscopies demonstrated that after light irradiation, photoexcited electrons in crystal violet flowed to [Au25(Cys)18] in the silicone, suggesting that redox reaction from [Au25(Cys)18] enhanced the photobactericidal activity. Stability tests revealed that leaching of crystal violet and [Au25(Cys)18] from the treated silicone was negligible and cyclic testing showed that the silicone maintained a strong photobactericidal activity after repeated use.


Asunto(s)
Antibacterianos/farmacología , Cistina/farmacología , Oro/farmacología , Nanoestructuras/química , Staphylococcus aureus/efectos de los fármacos , Antibacterianos/síntesis química , Antibacterianos/química , Cistina/química , Oro/química , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Tamaño de la Partícula , Procesos Fotoquímicos , Propiedades de Superficie
14.
Polymers (Basel) ; 12(6)2020 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-32560520

RESUMEN

Plasticized poly(lactic acid) (PLA)/poly(butylene succinate) (PBS) blend-based films containing chitin nanofibrils (CN) and calcium carbonate were prepared by extrusion and compression molding. On the basis of previous studies, processability was controlled by the use of a few percent of a commercial acrylic copolymer acting as melt strength enhancer and calcium carbonate. Furthermore, acetyl n-tributyl citrate (ATBC), a renewable and biodegradable plasticizer (notoriously adopted in PLA based products) was added to facilitate not only the processability but also to increase the mechanical flexibility and toughness. However, during the storage of these films, a partial loss of plasticizer was observed. The consequence of this is not only correlated to the change of the mechanical properties making the films more rigid but also to the crystallization and development of surficial oiliness. The effect of the addition of calcium carbonate (nanometric and micrometric) and natural nanofibers (chitin nanofibrils) to reduce/control the plasticizer migration was investigated. The prediction of plasticizer migration from the films' core to the external surface was carried out and the diffusion coefficients, obtained by regression of the experimental migration data plotted as the square root of time, were evaluated for different blends compositions. The results of the diffusion coefficients, obtained thanks to migration tests, showed that the CN can slow the plasticizer migration. However, the best result was achieved with micrometric calcium carbonate while nanometric calcium carbonate results were less effective due to favoring of some bio polyesters' chain scission. The use of both micrometric calcium carbonate and CN was counterproductive due to the agglomeration phenomena that were observed.

15.
J Funct Biomater ; 11(2)2020 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-32244595

RESUMEN

Nanobiocomposites suitable for preparing skin compatible films by flat die extrusion were prepared by using plasticized poly(lactic acid) (PLA), poly(butylene succinate-co-adipate) (PBSA), and Chitin nanofibrils as functional filler. Chitin nanofibrils (CNs) were dispersed in the blends thanks to the preparation of pre-nanocomposites containing poly(ethylene glycol). Thanks to the use of a melt strength enhancer (Plastistrength) and calcium carbonate, the processability and thermal properties of bionanocomposites films containing CNs could be tuned in a wide range. Moreover, the resultant films were flexible and highly resistant. The addition of CNs in the presence of starch proved not advantageous because of an extensive chain scission resulting in low values of melt viscosity. The films containing CNs or CNs and calcium carbonate resulted biocompatible and enabled the production of cells defensins, acting as indirect anti-microbial. Nevertheless, tests made with Staphylococcus aureus and Enterobacter spp. (Gram positive and negative respectively) by the qualitative agar diffusion test did not show any direct anti-microbial activity of the films. The results are explained considering the morphology of the film and the different mechanisms of direct and indirect anti-microbial action generated by the nanobiocomposite based films.

16.
J Funct Biomater ; 11(2)2020 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-32268483

RESUMEN

In the cosmetic sector, natural and sustainable products with a high compatibility with skin, thus conjugating wellness with a green-oriented consumerism, are required by the market. Poly(hydroxyalkanoate) (PHA)/starch blends represent a promising alternative to prepare flexible films as support for innovative beauty masks, wearable after wetting and releasing starch and other selected molecules. Nevertheless, preparing these films by extrusion is difficult due to the high viscosity of the polymer melt at the temperature suitable for processing starch. The preparation of blends including poly(butylene succinate-co-adipate) (PBSA) or poly(butylene adipate-co-terephthalate) (PBAT) was investigated as a strategy to better modulate melt viscosity in view of a possible industrial production of beauty mask films. The release properties of films in water, connected to their morphology, was also investigated by extraction trials, infrared spectroscopy and stereo and electron microscopy. Then, the biocompatibility with cells was assessed by considering both mesenchymal stromal cells and keratinocytes. All the results were discussed considering the morphology of the films. This study evidenced the possibility of modulating thanks to the selection of composition and the materials processing of the properties necessary for producing films with tailored properties and processability for beauty masks.

17.
Materials (Basel) ; 13(4)2020 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-32106389

RESUMEN

Gas-liquid reactions are poorly explored in the context of nanomaterials synthesis, despite evidence of significant effects of dissolved gas on nanoparticle properties. This applies to the aqueous synthesis of iron oxide nanoparticles, where gaseous reactants can influence reaction rate, particle size and crystal structure. Conventional batch reactors offer poor control of gas-liquid mass transfer due to lack of control on the gas-liquid interface and are often unsafe when used at high pressure. This work describes the design of a modular flow platform for the water-based synthesis of iron oxide nanoparticles through the oxidative hydrolysis of Fe2+ salts, targeting magnetic hyperthermia applications. Four different reactor systems were designed through the assembly of two modular units, allowing control over the type of gas dissolved in the solution, as well as the flow pattern within the reactor (single-phase and liquid-liquid two-phase flow). The two modular units consisted of a coiled millireactor and a tube-in-tube gas-liquid contactor. The straightforward pressurization of the system allows control over the concentration of gas dissolved in the reactive solution and the ability to operate the reactor at a temperature above the solvent boiling point. The variables controlled in the flow system (temperature, flow pattern and dissolved gaseous reactants) allowed full conversion of the iron precursor to magnetite/maghemite nanocrystals in just 3 min, as compared to several hours normally employed in batch. The single-phase configuration of the flow platform allowed the synthesis of particles with sizes between 26.5 nm (in the presence of carbon monoxide) and 34 nm. On the other hand, the liquid-liquid two-phase flow reactor showed possible evidence of interfacial absorption, leading to particles with different morphology compared to their batch counterpart. When exposed to an alternating magnetic field, the particles produced by the four flow systems showed ILP (intrinsic loss parameter) values between 1.2 and 2.7 nHm2/kg. Scale up by a factor of 5 of one of the configurations was also demonstrated. The scaled-up system led to the synthesis of nanoparticles of equivalent quality to those produced with the small-scale reactor system. The equivalence between the two systems is supported by a simple analysis of the transport phenomena in the small and large-scale setups.

18.
Polymers (Basel) ; 11(11)2019 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-31717937

RESUMEN

Biodegradable polymers are promising materials for films and sheets used in many widely diffused applications like packaging, personal care products and sanitary products, where the synergy of high biocompatibility and reduced environmental impact can be particularly significant. Plasticized poly(lactic acid) (PLA)/poly(butylene succinate) (PBS) blend-based films, showing high cytocompatibility and improved flexibility than pure PLA, were prepared by laboratory extrusion and their processability was controlled by the use of a few percent of a commercial melt strength enhancer, based on acrylic copolymers and micro-calcium carbonate. The melt strength enhancer was also found effective in reducing the crystallinity of the films. The process was upscaled by producing flat die extruded films in which elongation at break and tear resistance were improved than pure PLA. The in vitro biocompatibility, investigated through the contact of flat die extruded films with cells, namely, keratinocytes and mesenchymal stromal cells, resulted improved with respect to low density polyethylene (LDPE). Moreover, the PLA-based materials were able to affect immunomodulatory behavior of cells and showed a slight indirect anti-microbial effect. These properties could be exploited in several applications, where the contact with skin and body is relevant.

19.
Int J Mol Sci ; 20(3)2019 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-30682847

RESUMEN

Chitin-nanofibrils are obtained in water suspension at low concentration, as nanoparticles normally are, to avoid their aggregation. The addition of the fibrils in molten PLA during extrusion is thus difficult and disadvantageous. In the present paper, the use of poly(ethylene glycol) (PEG) is proposed to prepare a solid pre-composite by water evaporation. The pre-composite is then added to PLA in the extruder to obtain transparent nanocomposites. The amount of PEG and chitin nanofibrils was varied in the nanocomposites to compare the reinforcement due to nanofibrils and plasticization due to the presence of PEG, as well as for extrapolating, where possible, the properties of reinforcement due to chitin nanofibrils exclusively. Thermal and morphological properties of nanocomposites were also investigated. This study concluded that chitin nanofibrils, added as reinforcing filler up to 12% by weight, do not properties alter the properties of the PLA based material; hence, this additive can be used in bioplastic items mainly exploiting their intrinsic anti-microbial and skin regenerating properties.


Asunto(s)
Quitina/análogos & derivados , Nanocompuestos/química , Nanofibras/química , Poliésteres/química , Calor , Polietilenglicoles/química , Resistencia a la Tracción
20.
Nanomaterials (Basel) ; 8(4)2018 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-29671800

RESUMEN

The consolidation of degraded carbonate stone used in ancient monuments is an important topic for European cultural heritage conservation. The products most frequently used as consolidants are based on tetraalkoxy- or alkylalkoxy-silanes (in particular tetraethyl-orthosilicate, TEOS), resulting in the formation of relatively stable amorphous silica or alkylated (hydrophobic) silica inside the stone pores. However, silica is not chemically compatible with carbonate stones; in this respect, nanocalcite may be a suitable alternative. The present work concerns the preparation of water suspensions of calcite nanoparticles (CCNPs) by controlled carbonation of slaked lime using a pilot-scale reactor. A simplified design of experiment was adopted for product optimization. Calcite nanoparticles of narrow size distribution averaging about 30 nm were successfully obtained, the concentration of the interfacial agent and the size of CaO being the most critical parameters. Primary nanoparticle aggregation causing flocculation could be substantially prevented by the addition of polymeric dispersants. Copolymer-based dispersants were produced in situ by controlled heterophase polymerisation mediated by an amphiphilic macro-RAFT (reversible addition-fragmentation transfer) agent. The stabilized CCNP aqueous dispersions were then applied on carbonate and silicate substrates; Scanning Electron Microscopy (SEM)analysis of cross-sections allowed the evaluation of pore penetration, interfacial binding, and bridging (gap-filling) properties of these novel consolidants.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...