Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mov Ecol ; 10(1): 51, 2022 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-36419202

RESUMEN

BACKGROUND: The spatiotemporal organization of migratory routes of long-distance migrants results from trade-offs between minimizing the journey length and en route risk of migration-related mortality, which may be reduced by avoiding crossing inhospitable ecological barriers. Despite flourishing avian migration research in recent decades, little is still known about inter-individual variability in migratory routes, as well as the carry-over effects of spatial and temporal features of migration on subsequent migration stages. METHODS: We reconstructed post- and pre-breeding migration routes, barrier crossing behaviour and non-breeding movements of the largest sample (N = 85) analysed to date of individual barn swallows breeding in south-central Europe, which were tracked using light-level geolocators. RESULTS: Most birds spent their non-breeding period in the Congo basin in a single stationary area, but a small fraction of itinerant individuals reaching South Africa was also observed. Birds generally followed a 'clockwise loop migration pattern', moving through the central Mediterranean and the Sahara Desert during post-breeding (north to south) migration yet switching to a more western route, along the Atlantic coast of Africa, Iberia and western Mediterranean during the pre-breeding (south to north) migration. Southward migration was straighter and less variable, while northward migration was significantly faster despite the broader detour along the Atlantic coast and Iberia. These patterns showed limited sex-related variability. The timing of different circannual events was tightly linked with previous migration stages, considerably affecting migration route and speed of subsequent movements. Indeed, individuals departing late from Africa performed straighter and faster pre-breeding migrations, partly compensating for the initial departure delays, but likely at the cost of performing riskier movements across ecological barriers. CONCLUSIONS: Different spatiotemporal migration strategies during post- and pre-breeding migration suggest that conditions en route may differ seasonally and allow for more efficient travelling along different migration corridors in either season. While highlighting patterns of inter-individual variability, our results support increasing evidence for widespread loop migration patterns among Afro-Palearctic avian migrants. Also, they suggest that carry-over effects acting across different phases of the annual cycle of migratory species can have major impacts on evolutionary processes.

2.
J R Soc Interface ; 16(155): 20190031, 2019 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-31213173

RESUMEN

Geolocators are a well-established technology to reconstruct migration routes of animals that are too small to carry satellite tags (e.g. passerine birds). These devices record environmental light-level data that enable the reconstruction of daily positions from the time of twilight. However, all current methods for analysing geolocator data require manual pre-processing of raw records to eliminate twilight events showing unnatural variation in light levels, a step that is time-consuming and must be accomplished by a trained expert. Here, we propose and implement advanced machine learning techniques to automate this procedure and we apply them to 108 migration tracks of barn swallows ( Hirundo rustica). We show that routes reconstructed from the automated pre-processing are comparable to those obtained from manual selection accomplished by a human expert. This raises the possibility of fully automating light-level geolocator data analysis and possibly analysing the large amount of data already collected on several species.


Asunto(s)
Migración Animal , Aprendizaje Automático , Modelos Biológicos , Estaciones del Año , Golondrinas/fisiología , Animales , Sistemas de Información Geográfica
3.
Sci Rep ; 8(1): 12359, 2018 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-30120379

RESUMEN

Organisms are routinely confronted with crucial decisions on the best time and place to perform fundamental activities. However, unpredictable spatio-temporal variation in ecological factors makes life-history optimization difficult particularly for long-distance migrants, which are putatively blind of conditions thousands of kilometers and weeks ahead along their journey. Here we challenge, on a hierarchy of geographical scales, the common wisdom that migratory birds have no clue to ecological conditions at destination. Using ringing data of the inter-continental migrating barn swallow (Hirundo rustica), we show that temperatures at breeding sites and at times of arrival from migration are more correlated with those at actual wintering sites and at times of departure than with those at other sites and at periods before/after departure. Hence, individual swallows have clues to adjust timing of spring migration based on expected conditions at destination, and they apparently choose wintering sites to increase availability of such information.


Asunto(s)
Migración Animal/fisiología , Golondrinas/fisiología , Animales , Ecología , Estaciones del Año , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...