Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 10(1): 4551, 2019 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-31591416

RESUMEN

Analysis of biomedical images requires computational expertize that are uncommon among biomedical scientists. Deep learning approaches for image analysis provide an opportunity to develop user-friendly tools for exploratory data analysis. Here, we use the visual programming toolbox Orange ( http://orange.biolab.si ) to simplify image analysis by integrating deep-learning embedding, machine learning procedures, and data visualization. Orange supports the construction of data analysis workflows by assembling components for data preprocessing, visualization, and modeling. We equipped Orange with components that use pre-trained deep convolutional networks to profile images with vectors of features. These vectors are used in image clustering and classification in a framework that enables mining of image sets for both novel and experienced users. We demonstrate the utility of the tool in image analysis of progenitor cells in mouse bone healing, identification of developmental competence in mouse oocytes, subcellular protein localization in yeast, and developmental morphology of social amoebae.


Asunto(s)
Biología Computacional/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Aprendizaje Automático , Redes Neurales de la Computación , Animales , Dictyostelium/citología , Dictyostelium/crecimiento & desarrollo , Dictyostelium/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Internet , Estadios del Ciclo de Vida , Ratones Transgénicos , Oocitos/metabolismo , Reproducibilidad de los Resultados , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA