Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 14(22): 26148-26161, 2022 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-35635256

RESUMEN

Minimizing friction and wear is one of the continuing challenges in many mechanical industries. Recent research efforts have been focused on accelerating the antifriction and antiwear properties of hard coatings through the incorporation of self-lubricant materials or the development of new architectures. In this present study, carbon-rich MoC, MoCN, and multilayer MoC/MoCN coatings were deposited using reactive magnetron sputtering. X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy were used to evaluate their properties, which revealed the presence of ceramic cubic crystallites, covalent bonds between primary elements, and an excess of amorphous carbon (a-C) in all of the coatings. The multilayer architecture and possible segregation of a-C around the ceramic crystallites resulted in improved mechanical properties for all coatings, with MoC/MoCN coatings having a maximum hardness of 21 GPa and elastic modulus of 236 GPa. Friction and wear behavior are initially determined by the structural-composition-property relationships of the respective coatings; later, the tribological characteristics are altered depending on the nature of tribolayer on both mating surfaces at the contact interface. The highest wear resistance of multilayer MoC/MoCN coating (8.7 × 10-8 mm3/N m) and MoC coating (3.9 × 10-7 mm3/N m) was due to the dissipation of contact stress by the tribofilm consisting of carbon tribo products like graphitic sp2 carbon, diamond-like sp3 carbon, and pyrrolic-N. On the other hand, MoCN coating depicted a lower wear resistance due to the frequent termination of C-H bonds by N, which restricts the strong formation of tribofilms as well as poor mechanical properties.

2.
Nanoscale ; 13(15): 7308-7321, 2021 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-33889909

RESUMEN

We report a novel versatile method for writing charged areas on diamond nanowire (DNW) surfaces using an atomic force microscopy (AFM) tip. Transmission electron microscopy (TEM) investigations revealed the existence of abundant plate-like diamond aggregates, which were encased in layers of graphite, forming nano-sized diamond-graphite composites (DGCs) on DNW surfaces. These DGCs are the main feature, acting as charge-trapping centers and storing electrostatic charge. A hydrogenation process has been observed effectively enhancing the charge-trapping properties of these DNW materials. The effective charge trapping properties with hydrogenation are ascribed to the disintegration of the DGCs into smaller pieces, with an overall increase in the metallic nanographitic phase fractions in a dielectric diamond matrix. Moreover, the written charge on the surface can be easily modified, re-written, or completely erased, enabling application in diamond-based re-writable electronic devices. However, excessive hydrogenation degrades the charge-trapping properties, which is attributed to the etching of the DGCs from the surface. This study demonstrates the potential importance of a simple hydrogenation process in effective electrostatic charge trapping and storage for diamond related nanocarbon materials and the role of DGCs to further enhance it.

3.
RSC Adv ; 10(55): 33189-33195, 2020 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-35515020

RESUMEN

We report the enhanced charge storage characteristics of ultrananocrystalline diamond (UNCD) by contact electrification-induced hydrogenation. The non-catalytic hydrogenation of UNCD films was achieved by using platinum as an electron donor and sulfuric acid as a hydrogen proton donor, confirmed by Raman spectroscopy and time-of-flight secondary ion mass spectroscopy (TOF-SIMS). Chemical treatment with only a H2SO4 solution is responsible for the surface oxidation. The oxidation of UNCD resulted in an increase in the quantity and duration of the tribocharges. After non-catalytic hydrogenation, the generation of friction-induced tribocharges was enhanced and remained for three hours and more. We show that the hydrogen incorporation on grain boundaries is responsible for the improvement of charge storage capability, because the doped hydrogen acts as a trap site for the tribocharges. This lab-scale and succinct method can be utilized to control charge trap capability in nanoscale memory electronics.

4.
ACS Appl Mater Interfaces ; 11(51): 48612-48623, 2019 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-31794182

RESUMEN

Electron emission signifies an important mechanism facilitating the enlargement of devices that have modernized large parts of science and technology. Today, the search for innovative electron emission devices for imaging, sensing, electronics, and high-energy physics continues. Integrating two materials with dissimilar electronic properties into a hybrid material is an extremely sought-after synergistic approach, envisioning a superior field electron emission (FEE) material. An innovation is described regarding the fabrication of a nanostructured carbon hybrid, resulting from the one-step growth of boron-doped nanocrystalline diamond (BNCD) and carbon nanospikes (CNSs) by a microwave plasma-enhanced chemical vapor deposition technique. Spectroscopic and microscopic tools are used to investigate the morphological, bonding, and microstructural characteristics related to the growth mechanism of these hybrids. Utilizing the benefits of both the sharp edges of the CNSs and the high stability of BNCD, promising FEE performance with a lower turn-on field of 1.3 V/µm, a higher field enhancement factor of 6780, and a stable FEE current stability lasting for 780 min is obtained. The microplasma devices utilizing these hybrids as a cathode illustrate a superior plasma illumination behavior. Such hybrid carbon nanostructures, with superb electron emission characteristics, can encourage the enlargement of several electron emission device technologies.

5.
Nanoscale ; 11(13): 6120-6128, 2019 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-30869720

RESUMEN

We report improved the triboelectric properties of ultraviolet (UV)-irradiated ultrananocrystalline diamond (UNCD) films that were measured using atomic force microscopy (AFM). Fabricated using the chemical vapor deposition (CVD) method, UNCD is an artificial diamond film with mechanical properties similar to single-crystal diamond. Surface modification by means of UV irradiation is a simple method to modify the surface properties of carbon-based and oxide materials. While the physical properties (e.g., roughness, adhesion, and friction) of these UNCD films did not exhibit any significant change following the UV treatment, we found that the UV-irradiated UNCD surface was oxidized and became graphitic, as confirmed using X-ray photoelectron spectroscopy, work function measurements using Kelvin probe force microscopy, and ultraviolet photoelectron spectroscopy. The work function of the samples increased with increasing UV exposure time, which is associated with the reduction of carbon atoms on the surface and oxygen-rich surfaces. Tribocharges were generated by scratching the surface of the UNCD films with a diamond-coated AFM tip. The duration of the tribocharges increased because of reactive radicals and the insulating property resulting from the UV/ozone treatment. The radicals were responsible for trapping charges; the UV-irradiated UNCD films preserved the charges for more than 5 h, which is five times longer than that on bare UNCD. This study demonstrated that UNCD is a promising material for generating triboelectricity and that UNCD can be used as a charge-trapping layer in charge-trap flash memory devices.

6.
Nanomaterials (Basel) ; 8(9)2018 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-30149533

RESUMEN

Low temperature (350 °C) grown conductive nanocrystalline diamond (NCD) films were realized by lithium diffusion from Cr-coated lithium niobate substrates (Cr/LNO). The NCD/Cr/LNO films showed a low resistivity of 0.01 Ω·cm and excellent field electron emission characteristics, viz. a low turn-on field of 2.3 V/µm, a high-current density of 11.0 mA/cm² (at 4.9 V/m), a large field enhancement factor of 1670, and a life-time stability of 445 min (at 3.0 mA/cm²). The low temperature deposition process combined with the excellent electrical characteristics offers a new prospective for applications based on temperature sensitive materials.

7.
Nanoscale ; 10(3): 1345-1355, 2018 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-29296984

RESUMEN

Carbon nanomaterials such as nanotubes, nanoflakes/nanowalls, and graphene have been used as electron sources due to their superior field electron emission (FEE) characteristics. However, these materials show poor stability and short lifetimes, which prevent their use in practical device applications. The aim of this study was to find an innovative nanomaterial possessing both high robustness and reliable FEE behavior. Herein, a hybrid structure of self-organized multi-layered graphene (MLG)-boron doped diamond (BDD) nanowall materials with superior FEE characteristics was successfully synthesized using a microwave plasma enhanced chemical vapor deposition process. Transmission electron microscopy reveals that the as-prepared carbon clusters have a uniform, dense, and sharp nanowall morphology with sp3 diamond cores encased by an sp2 MLG shell. Detailed nanoscale investigations conducted using peak force-controlled tunneling atomic force microscopy show that each of the core-shell structured carbon cluster fields emits electrons equally well. The MLG-BDD nanowall materials show a low turn-on field of 2.4 V µm-1, a high emission current density of 4.2 mA cm-2 at an applied field of 4.0 V µm-1, a large field enhancement factor of 4500, and prominently high lifetime stability (lasting for 700 min), which demonstrate the superiority of these materials over other hybrid nanostructured materials. The potential of these MLG-BDD hybrid nanowall materials in practical device applications was further illustrated by the plasma illumination behavior of a microplasma device with these materials as the cathode, where a low threshold voltage of 330 V (low threshold field of 330 V mm-1) and long plasma stability of 358 min were demonstrated. The fabrication of these hybrid nanowalls is straight forward and thereby opens up a pathway for the advancement of next-generation cathode materials for high brightness electron emission and microplasma-based display devices.

8.
Sci Rep ; 8(1): 283, 2018 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-29321546

RESUMEN

Improving the tribological properties of materials in ambient and high vacuum tribo-conditions is useful for inter-atmospheric applications. Highly-hydrogenated and less-hydrogenated ultrananocrystalline diamond (UNCD) films with distinct microstructural characteristics were deposited on Ti-6Al-4 V alloy, by optimizing the plasma conditions in the chemical vapor deposition. Both the UNCD films showed less friction coefficient in ambient atmospheric tribo-contact conditions due to the passivation. This provides chemical stability to UNCD films under the tribo-mechanical stressed conditions which limits the transferlayer formation and conversion of UNCD phase into graphitization/amorphization. However, in the high vacuum tribo-conditions, highly-hydrogenated UNCD films showed low friction value which gradually increased to the higher magnitude at longer sliding cycles. The low friction coefficient was indicative of passivation provided by the hydrogen network intrinsically present in the UNCD films. It gradually desorbs and the dangling bonds are progressively activated in the contact regime, leading to a gradual increase in the friction value. In contrast, less-hydrogenated UNCD films do not exhibit low friction regime in high vacuum conditions due to the lack of internal passivation. In this case, the conversion of UNCD to amorphized carbon structure in the wear tracks and amorphous carbon (a-C) tribofilm formation on ball scars were observed.

9.
Sci Rep ; 7(1): 16325, 2017 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-29176566

RESUMEN

Silver (Ag) ions are implanted in ultrananocrystalline diamond (UNCD) films to enhance the electron field emission (EFE) properties, resulting in low turn-on field of 8.5 V/µm with high EFE current density of 6.2 mA/cm2 (at an applied field of 20.5 V/µm). Detailed nanoscale investigation by atomic force microscopy based peak force-controlled tunneling atomic force microscopy (PF-TUNA) and ultra-high vacuum scanning tunneling microscopy (STM) based current imaging tunneling spectroscopy (CITS) reveal that the UNCD grain boundaries are the preferred electron emission sites. The two scanning probe microscopic results supplement each other well. However, the PF-TUNA measurement is found to be better for explaining the local electron emission behavior than the STM-based CITS technique. The formation of Ag nanoparticles induced abundant sp2 nanographitic phases along the grain boundaries facilitate the easy transport of electrons and is believed to be a prime factor in enhancing the conductivity/EFE properties of UNCD films. The nanoscale understanding on the origin of electron emission sites in Ag-ion implanted/annealed UNCD films using the scanning probe microscopic techniques will certainly help in developing high-brightness electron sources for flat-panel displays applications.

10.
Sci Rep ; 7: 45030, 2017 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-28344337

RESUMEN

Functionalized and fully characterized graphene-based lubricant additives are potential 2D materials for energy-efficient tribological applications in machine elements, especially at macroscopic contacts. Two different reduced graphene oxide (rGO) derivatives, terminated by hydroxyl and epoxy-hydroxyl groups, were prepared and blended with two different molecular weights of polyethylene glycol (PEG) for tribological investigation. Epoxy-hydroxyl-terminated rGO dispersed in PEG showed significantly smaller values of the friction coefficient. In this condition, PEG chains intercalate between the functionalized graphene sheets, and shear can take place between the PEG and rGO sheets. However, the friction coefficient was unaffected when hydroxyl-terminated rGO was coupled with PEG. This can be explained by the strong coupling between graphene sheets through hydroxyl units, causing the interaction of PEG with the rGO to be non- effective for lubrication. On the other hand, antiwear properties of hydroxyl-terminated rGO were significantly enhanced compared to epoxy-hydroxyl functionalized rGO due to the integrity of graphene sheet clusters.

11.
Sci Rep ; 6: 18372, 2016 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-26725334

RESUMEN

Optimized concentration of reduced graphene oxide (rGO) in the lube is one of the important factors for effective lubrication of solid body contacts. At sufficiently lower concentration, the lubrication is ineffective and friction/wear is dominated by base oil. In contrast, at sufficiently higher concentration, the rGO sheets aggregates in the oil and weak interlayer sliding characteristic of graphene sheets is no more active for providing lubrication. However, at optimized concentration, friction coefficient and wear is remarkably reduced to 70% and 50%, respectively, as compared to neat oil. Traditionally, such lubrication is described by graphene/graphite particle deposited in contact surfaces that provides lower shear strength of boundary tribofilm. In the present investigation, graphene/graphite tribofilm was absent and existing traditional lubrication mechanism for the reduction of friction and wear is ruled out. It is demonstrated that effective lubrication is possible, if rGO is chemically linked with PEG molecules through hydrogen bonding and PEG intercalated graphene sheets provide sufficiently lower shear strength of freely suspended composite tribofilm under the contact pressure. The work revealed that physical deposition and adsorption of the graphene sheets in the metallic contacts is not necessary for the lubrication.

12.
ACS Appl Mater Interfaces ; 6(11): 8531-41, 2014 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-24824342

RESUMEN

The effect of hydrogen plasma treatment on the electrical conductivity and electron field emission (EFE) properties for diamond nanowire (DNW) films were systematically investigated. The DNW films were deposited on silicon substrate by N2-based microwave plasma-enhanced chemical vapor deposition process. Transmission electron microscopy depicted that DNW films mainly consist of wirelike diamond nanocrystals encased in a nanographitic sheath, which formed conduction channels for efficient electron transport and hence lead to excellent electrical conductivity and EFE properties for these films. Hydrogen plasma treatment initially enhanced the electrical conductivity and EFE properties of DNW films and then degraded with an increase in treatment time. Scanning tunneling spectroscopy in current imaging tunneling spectroscopy mode clearly shows significant increase in local emission sites in 10 min hydrogen plasma treated diamond nanowire (DNW10) films as compared to the pristine films that is ascribed to the formation of graphitic phase around the DNWs due to the hydrogen plasma treatment process. The degradation in EFE properties of extended (15 min) hydrogen plasma-treated DNW films was explained by the removal of nanographitic phase surrounding the DNWs. The EFE process of DNW10 films can be turned on at a low field of 4.2 V/µm and achieved a high EFE current density of 5.1 mA/cm(2) at an applied field of 8.5 V/µm. Moreover, DNW10 films with high electrical conductivity of 216 (Ω cm)(-1) overwhelm that of other kinds of UNCD films and will create a remarkable impact to diamond-based electronics.

13.
ACS Appl Mater Interfaces ; 6(7): 4911-9, 2014 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-24624900

RESUMEN

The effects of Cu and Au ion implantation on the structural and electron field emission (EFE) properties of ultrananocrystalline diamond (UNCD) films were investigated. High electrical conductivity of 186 (Ω•cm)(-1) and enhanced EFE properties with low turn-on field of 4.5 V/µm and high EFE current density of 6.70 mA/cm(2) have been detected for Au-ion implanted UNCD (Au-UNCD) films that are superior to those of Cu-ion implanted UNCD (Cu-UNCD) ones. Transmission electron microscopic investigations revealed that Au-ion implantation induced a larger proportion of nanographitic phases at the grain boundaries for the Au-UNCD films in addition to the formation of uniformly distributed spherically shaped Au nanoparticles. In contrast, for Cu-UNCD films, plate-like Cu nanoparticles arranged in the row-like pattern were formed, and only a smaller proportion of nanographite phases along the grain boundaries was induced. From current imaging tunneling spectroscopy and local current-voltage curves of scanning tunneling spectroscopic measurements, it is observed that the electrons are dominantly emitted from the grain boundaries. Consequently, the presence of nanosized Au particles and the induction of abundant nanographitic phases in the grain boundaries of Au-UNCD films are believed to be the authentic factors, ensuing in high electrical conductivity and outstanding EFE properties of the films.

14.
ACS Appl Mater Interfaces ; 5(4): 1294-301, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23327783

RESUMEN

Conducting diamond nanowires (DNWs) films have been synthesized by N2-based microwave plasma enhanced chemical vapor deposition. The incorporation of nitrogen into DNWs films is examined by C 1s X-ray photoemission spectroscopy and morphology of DNWs is discerned using field-emission scanning electron microscopy and transmission electron microscopy (TEM). The electron diffraction pattern, the visible-Raman spectroscopy, and the near-edge X-ray absorption fine structure spectroscopy display the coexistence of sp³ diamond and sp² graphitic phases in DNWs films. In addition, the microstructure investigation, carried out by high-resolution TEM with Fourier transformed pattern, indicates diamond grains and graphitic grain boundaries on surface of DNWs. The same result is confirmed by scanning tunneling microscopy and scanning tunneling spectroscopy (STS). Furthermore, the STS spectra of current-voltage curves discover a high tunneling current at the position near the graphitic grain boundaries. These highly conducting regimes of grain boundaries form effective electron paths and its transport mechanism is explained by the three-dimensional (3D) Mott's variable range hopping in a wide temperature from 300 to 20 K. Interestingly, this specific feature of high conducting grain boundaries of DNWs demonstrates a high efficiency in field emission and pave a way to the next generation of high-definition flat panel displays or plasma devices.

15.
ACS Appl Mater Interfaces ; 4(8): 4169-76, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22823911

RESUMEN

Enhanced electron field emission (EFE) properties have been observed for ultrananocrystalline diamond (UNCD) films grown on Au-coated Si (UNCD/Au-Si) substrates. The EFE properties of UNCD/Au-Si could be turned on at a low field of 8.9 V/µm, attaining EFE current density of 4.5 mA/cm(2) at an applied field of 10.5 V/µm, which is superior to that of UNCD films grown on Si (UNCD/Si) substrates with the same chemical vapor deposition process. Moreover, a significant difference in current-voltage curves from scanning tunneling spectroscopic measurements at the grain and the grain boundary has been observed. From the variation of normalized conductance (dI/dV)/(I/V) versus V, bandgap of UNCD/Au-Si is measured to be 2.8 eV at the grain and nearly metallic at the grain boundary. Current imaging tunneling spectroscopy measurements show that the grain boundaries have higher electron field emission capacity than the grains. The diffusion of Au into the interface layer that results in the induction of graphite and converts the metal-to-Si interface from Schottky to Ohmic contact is believed to be the authentic factors, resulting in marvelous EFE properties of UNCD/Au-Si.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...