Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Life Sci ; 340: 122473, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38290571

RESUMEN

AIMS: The use of antibiotics affects health. The gut microbial dysbiosis by antibiotics is thought to be an essential pathway to influence health. It is important to have optimized energy utilization, in which adipose tissues (AT) play crucial roles in maintaining health. Adipocytes regulate the balance between energy expenditure and storage. While it is known that white adipose tissue (WAT) stores energy and brown adipose tissue (BAT) produces energy by thermogenesis, the role of an intermediate AT plays an important role in balancing host internal energy. In the current study, we tried to understand how treating an antibiotic cocktail transforms WAT into BAT or, more precisely, into beige adipose tissue (BeAT). METHODS: Since antibiotic treatment perturbs the host microbiota, we wanted to understand the role of gut microbial dysbiosis in transforming WAT into BeAT in C57BL/6 mice. We further correlated the metabolic profile at the systemic level with this BeAT transformation and gut microbiota profile. KEY FINDINGS: In the present study, we have reported that the antibiotic cocktail treatment increases the Proteobacteria and Actinobacteria while reducing the Bacteroidetes phylum. We observed that prolonged antibiotic treatment could induce the formation of BeAT in the inguinal and perigonadal AT. The correlation analysis showed an association between the gut microbiota phyla, beige adipose tissue markers, and serum metabolites. SIGNIFICANCE: Our study revealed that the gut microbiota has a significant role in regulating the metabolic health of the host via microbiota-adipose axis communication.


Asunto(s)
Microbioma Gastrointestinal , Animales , Ratones , Microbioma Gastrointestinal/fisiología , Disbiosis/metabolismo , Ratones Endogámicos C57BL , Tejido Adiposo Blanco/metabolismo , Tejido Adiposo Pardo/metabolismo , Metabolismo Energético , Metaboloma , Antibacterianos/farmacología , Antibacterianos/metabolismo , Termogénesis
2.
J Mater Chem B ; 11(42): 10147-10157, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37849354

RESUMEN

Battery-free and biodegradable sensors can detect biological elements in remote areas. The triboelectric nanogenerator (TENG) can potentially eliminate the need for a battery by simply converting the abundant vibrations from nature or human motion into electricity. A biodegradable sensor system integrated with TENG to detect commonly found disease-causing bacteria (E. coli) in the environment is showcased herein. In this system, D-mannose functionalized 3D printed polylactic acid (PLA) with the brush-painted silver electrode was used to detect E. coli by a simple carbohydrate-protein interaction mechanism. The adsorption capacity of D-mannose is generally altered by varying the concentration of E. coli resulting in changes in resistance. Thus, the presented biosensor can detect bacterial concentrations by monitoring the output current. The PLA TENG generates an output of 70 V, 800 nA, and 22 nC, respectively. In addition, tap water and unpasteurized milk samples are tested for detecting bacteria, and the output is measured at 6 µA and 5 µA, respectively. Further, the biosensor was tested for biodegradability in soil compost by maintaining constant temperature and humidity. This study not only proposes an efficient and fast method for screening E. coli but also gives important insights into the ability to degrade and long-term reliability of TENG-based sensor platforms.


Asunto(s)
Escherichia coli , Manosa , Humanos , Reproducibilidad de los Resultados , Bacterias , Poliésteres
3.
ACS Appl Mater Interfaces ; 15(30): 36096-36106, 2023 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-37471608

RESUMEN

Oral healthcare monitoring is a vital aspect of identifying and addressing oral dental problems including tooth decay, gum pain, and oral cancer. Day by day, healthcare facilities and regular checkups are becoming more costly and time-consuming. In this context, consumers are moving toward advanced technology, such as bite sensors, to obtain regular data about their occlusal chewing patterns and strength. The triboelectric nanogenerator (TENG) can potentially eliminate the need for a battery by simply converting abundant vibrations from nature or human motion into electrical energy. In this work, biomaterials are obtained from biowastes such as cellulose from wood waste, chitosan from crab shells, and gelatin from fish scales. All wastes are biodegradable, and our work aims at sustainability and waste hierarchy. The single electrode mode-based TENG was designed and fabricated using biodegradable poly(vinyl alcohol) (PVA)-biomaterial composites, rice paper as a substrate, and edible silver leaf as an electrode. The highest electrical output was obtained for PVA/chitosan 10 wt % composite-based TENG (PC10) of about 20 V, 200 nA, and 12 nC. The biomechanical energy harvesting was measured, and powering of LED was demonstrated using a PC10 TENG device. A biocompatible bite sensor based on the TENG was used to measure the biting force of a dummy teeth model to demonstrate its potential use in dental health applications. It indicates the promising future value of disposable oral medication devices without any invasive surgery or injection.


Asunto(s)
Quitosano , Animales , Humanos , Salud Bucal , Materiales Biocompatibles , Celulosa , Suministros de Energía Eléctrica
4.
Metabolites ; 13(4)2023 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-37110147

RESUMEN

Obesity is a complex health condition that increases the susceptibility to developing cardiovascular diseases, diabetes, and numerous other metabolic health issues. The effect of obesity is not just limited to the conditions mentioned above; it is also seen to have a profound impact on the patient's mental state, leading to the onset of various mental disorders, particularly mood disorders. Therefore, it is necessary to understand the mechanism underlying the crosstalk between obesity and mental disorders. The gut microbiota is vital in regulating and maintaining host physiology, including metabolism and neuronal circuits. Because of this newly developed understanding of gut microbiota role, here we evaluated the published diverse information to summarize the achievement in the field. In this review, we gave an overview of the association between obesity, mental disorders, and the role of gut microbiota there. Further new guidelines and experimental tools are necessary to understand the microbial contribution to regulate a balanced healthy life.

5.
Small ; 19(25): e2300847, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36929123

RESUMEN

The ocean holds vast potential as a renewable energy source, but harnessing its power has been challenging due to low-frequency and high-amplitude stimulation. However, hybrid nanogenerators (HNGs) offer a promising solution to convert ocean energy into usable power efficiently. With their high sensitivity and flexible design, HNGs are ideal for low-frequency environments and remote ocean regions. Combining triboelectric nanogenerators (TENGs) with piezoelectric nanogenerators (PENGs) and electromagnetic nanogenerators (EMGs) creates a unique hybrid system that maximizes energy harvesting. Ultimately, hybrid energy-harvesting systems offer a sustainable and reliable solution for growing energy needs. This study provides an in-depth review of the latest research on ocean energy harvesting by hybrid systems, focusing on self-powered applications. The article also discusses primary hybrid designs for devices, powering self-powered units such as wireless communication systems, climate monitoring systems, and buoys as applications. The potential of HNGs is enormous, and with rapid advancements in research and fabrication, these systems are poised to revolutionize ocean energy harvesting. It outlines the pros and cons of HNGs and highlights the major challenges that must be overcome. Finally, future outlooks for hybrid energy harvesters are also discussed.

6.
Biomater Sci ; 10(18): 5054-5080, 2022 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-35876134

RESUMEN

Three-dimensional (3D) bioprinting technology has attracted a great deal of interest because it can be easily adapted to many industries and research sectors, such as biomedical, manufacturing, education, and engineering. Specifically, 3D bioprinting has provided significant advances in the medical industry, since such technology has led to significant breakthroughs in the synthesis of biomaterials, cells, and accompanying elements to produce composite living tissues. 3D bioprinting technology could lead to the immense capability of replacing damaged or injured tissues or organs with newly dispensed cell biomaterials and functional tissues. Several types of bioprinting technology and different bio-inks can be used to replicate cells and generate supporting units as complex 3D living tissues. Bioprinting techniques have undergone great advancements in the field of regenerative medicine to provide 3D printed models for numerous artificial organs and transplantable tissues. This review paper aims to provide an overview of 3D-bioprinting technologies by elucidating the current advancements, recent progress, opportunities, and applications in this field. It highlights the most recent advancements in 3D-bioprinting technology, particularly in the area of artificial organ development and cancer research. Additionally, the paper speculates on the future progress in 3D-bioprinting as a versatile foundation for several biomedical applications.


Asunto(s)
Órganos Artificiales , Bioimpresión , Materiales Biocompatibles , Bioimpresión/métodos , Impresión Tridimensional , Tecnología , Ingeniería de Tejidos/métodos
7.
Bioorg Chem ; 106: 104454, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33213895

RESUMEN

Being crucial part of plant-based novel discovery of drug from natural resources, a study was done to explore the antibacterial potential of curcumin mimics in combination with antibiotics against multidrug resistant isolates of Pseudomonas aeruginosa. The best candidate Van D, a curcumin mimics reduced the MIC of tetracycline (TET) up to 16 folds against multidrug resistant clinical isolates. VanD further inhibited the efflux pumps as evident by ethidium bromide efflux and by in-silico docking studies. In another experiment, it was also found that Van D inhibits biofilm synthesis. This derivative kills the KG-P2, an isolate of P. aeruginosa in a time dependent manner, the post-antibiotic effect (PAE) of tetracycline was extended as well as mutant prevention concentration (MPC) of TET was also decreased. In Swiss albino mice, Van D reduced the proinflammatory cytokines concentration. In acute oral toxicity study, this derivative was well tolerated and found to be safe up to 1000 mg/kg dose. To the best of our knowledge, this is the first report on curcumin mimics as synergistic agent via inhibition of efflux pump.


Asunto(s)
Antibacterianos/uso terapéutico , Chalconas/uso terapéutico , Farmacorresistencia Bacteriana/efectos de los fármacos , Animales , Antibacterianos/síntesis química , Antibacterianos/metabolismo , Antibacterianos/toxicidad , Proteínas de la Membrana Bacteriana Externa/metabolismo , Biopelículas/efectos de los fármacos , Chalconas/síntesis química , Chalconas/metabolismo , Chalconas/toxicidad , Curcumina/química , Curcumina/farmacología , Diseño de Fármacos , Sinergismo Farmacológico , Femenino , Masculino , Proteínas de Transporte de Membrana/metabolismo , Ratones Endogámicos BALB C , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular , Unión Proteica , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/fisiología , Tetraciclina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...