Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Brain Behav ; 14(1): e3351, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38376050

RESUMEN

INTRODUCTION: Vascular dementia (VaD) is a common type of dementia. The aim of this study was to investigate the cellular and molecular mechanism of conditioned medium (CM) in VaD. MATERIAL AND METHODS: The rats were divided into four groups of control (n = 9), sham-operation (n = 10), VaD with vehicle (n = 9), and VaD with CM (n = 12) that received CM on days 4, 14, and 24 after 2VO. Before sacrificing the rats, cognitive performance was assessed through the open-field (OP), passive-avoidance, and Morris-water maze. The field-potential recording was used to investigate basal synaptic transmission (BST) and long-term potentiation (LTP). Subsequently, the hippocampus was dissected, and real-time PCR was used to quantify the expression levels of ß1-catenin, insulin-like growth factor-1 (IGF-1), transforming growth factor-beta (TGF-ß), glycogen synthase kinase-3ß (GSK-3ß), postsynaptic density protein 95 (PSD-95), and NR2B genes. RESULTS: The results indicated impaired performance in behavioral tests in 2VO rats, coupled with reductions in BST and LTP induction. The expression levels of ß1-catenin, IGF-1, PSD-95, and TGF-ß genes decreased, whereas NR2B and GSK-3ß expression increased. Treatment with CM restores the expression of PSD-95 and GSK-3ß as well as fear-memory, spatial learning, and grooming number without a positive effect on memory retrieval, time spent on the periphery and center of OP. The BST recovered upon administration of CM but, the LTP induction was still impaired. CONCLUSION: The recovery of BST in VaD rats appears to be the most important outcome of this study which is caused by the improvement of gene expression and leads to the restoration of fear memory.


Asunto(s)
Demencia Vascular , Animales , Ratas , Cateninas/metabolismo , Cognición , Medios de Cultivo Condicionados/farmacología , Homólogo 4 de la Proteína Discs Large , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Hipocampo/metabolismo , Factor I del Crecimiento Similar a la Insulina/metabolismo , Aprendizaje por Laberinto , Ratas Sprague-Dawley , Células Madre/metabolismo , Transmisión Sináptica , Factor de Crecimiento Transformador beta/metabolismo
2.
Stem Cells Int ; 2023: 3784843, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38146481

RESUMEN

This study aimed to evaluate the efficacy and treatment mechanism of platelet-rich plasma (PRP) and neural crest-derived epidermal stem cells (ESCs) in their administration alone and combination in vascular dementia (VaD) model by two-vessel occlusion (2VO). Methods. Sixty-six rats were divided into six groups: the control, sham, 2VO + vehicle, 2VO + PRP, 2VO + ESC, and 2VO + ESC + PRP. The treated groups received 1 million cells on days 4, 14, and 21 with or without 500 µl PRP (twice a week) after 2VO. The memory performance and anxiety were evaluated by behavioral tests including open field, passive avoidance, and Morris water maze. The basal-synaptic transmission (BST) and long-term potentiation (LTP) were assessed through field-potential recordings of the CA1. The mRNA expression levels of IGF-1, TGF-ß1, PSD-95, and GSk-3ß were measured in the rat hippocampus by quantitative reverse transcription polymerase chain reaction. Results. The results demonstrated impaired learning, memory, and synaptic plasticity in the 2VO rats, along with a significant decrease in the expression of IGF-1, TGF-ß1, PSD-95, and upregulation of GSK-3ß. Treatment with ESC alone and ESC + PRP showed similar improvements in spatial memory and LTP induction, with associated upregulation of PSD-95 and downregulation of GSK-3ß. However, only the ESC + PRP group showed recovery in BST. Furthermore, combination therapy was more effective than PRP monotherapy for LTP and memory. Conclusions. The transplantation of ESC showed better effects than PRP alone, and combination therapy increased the treatment efficacy with the recovery of BST. This finding may be a clue for the combination therapy of ESC and PRP for VaD.

3.
J Neurosci Methods ; 399: 109971, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37722626

RESUMEN

BACKGROUND: Cerebrospinal fluid (CSF) collection and its analysis are common medical practices useful in the diagnosis, therapy, and prevention of central nervous system (CNS) disorders. In recent years, several types of research have improved our insight into CSF and its role in health and disease. Yet, many characteristics of this fluid remain to be fully understood. NEW METHODS: Here, we describe how to collect CSF from embryonic, postnatal, and adult stages of the rat. In adults, CSF can be collected through simple stereotaxic surgery to expose the membrane overlying the cisterna magna (CM) of an anesthetized rat and collection of CSF through micropipette puncture through the membrane. In embryos and pups, CSF is aspirated, using a fire-polished micro-capillary pipette, from the CM of animals. RESULTS: Application of these methods provides the maximum volume of pure, uncontaminated CSF (embryonic day 19: 10-15 microliter, postnatal day 5: 20-30 microliter, adults: 100-200 microliter) with a success rate of approximately 95% in every age. COMPARISON WITH EXISTING METHODS: Compared to the existing protocols, these methods obtain considerable volumes of CSF, which may accelerate the measurement of biological markers in this fluid. Also, these techniques do not require surgical skills and according to the practical points mentioned during sampling, the procedures can be performed in rapid fashion. CONCLUSION: We describe simple methods for collecting CSF in live rats. These protocols provide clean, uncontaminated CSF for experiments to understand the exact role of this fluid in the development and maintenance of the CNS health.


Asunto(s)
Cisterna Magna , Punción Espinal , Ratas , Animales , Punción Espinal/métodos , Cisterna Magna/cirugía , Manejo de Especímenes/métodos , Biomarcadores , Líquido Cefalorraquídeo/fisiología
4.
Behav Brain Res ; 454: 114655, 2023 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-37666305

RESUMEN

BACKGROUND: In dementia, synaptic dysfunction appears before neuronal loss. Stem cell therapy could potentially provide a promising strategy for the treatment of dementia models. The carbamylated erythropoietin fusion protein (CEPO-Fc) has shown synaptotrophic effects. This study aimed to determine the efficiency of the combined use of hair follicle stem cells (HFSC) and CEPO-Fc in the basal synaptic transmission (BST) and long-term plasticity (LTP) of chronic cerebral hypoperfusion (CCH) rats. METHODS: We divided 64 adult rats into control, sham, CCH+vehicle, CCH+CEPO, CCH+HFSC, and CCH+HFSC+CEPO groups. The CEPO-Fc was injected three times/week for 30 days. HFSC transplantation was done on days 4, 14, and 21 after surgery. The Morris water maze test and passive avoidance were used to assess memory. BST and LTP were assessed by a field-potential recording of the CA1 region. The hippocampal mRNA expression of IGF-1, TGF-ß1, ß1-Catenine, NR2B, PSD-95, and GSk-3ß was evaluated by quantitative RT-PCR. RESULTS: Following combination therapy, spatial memory retention, and BST showed significant improvement relative to HFSC and CEPO-Fc groups. These effects were also confirmed by recovered mRNA expression of ß1-catenin, TGF-ß1, and NR2B. GSK-3ß expression was downregulated in all treatment groups. The upregulated PSD-95 was identified in HFSC and combination groups compared to the vehicle group. CONCLUSIONS: These findings indicate that the combined use of HFSC and CEPO-Fc may be more advantageous for treating memory disruption in the CCH model than CEPO-Fc or HFSC alone. This type of combination therapy may hopefully lead to a new approach to treatment for dementia.


Asunto(s)
Isquemia Encefálica , Demencia , Animales , Ratas , Glucógeno Sintasa Quinasa 3 beta , Factor de Crecimiento Transformador beta1 , Folículo Piloso , Homólogo 4 de la Proteína Discs Large , Células Madre , ARN Mensajero
5.
Stem Cell Rev Rep ; 19(7): 2510-2524, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37548806

RESUMEN

The intricate nature of the human brain and the limitations of existing model systems to study molecular and cellular causes of neuropsychiatric disorders represent a major challenge for basic research. The promising progress in patient-derived stem cell technology and in our knowledge on the role of the brain oxytocin (OXT) system in health and disease offer new possibilities in that direction. In this study, the rat hair follicle stem cells (HFSCs) were isolated and expanded in vitro. The expression of oxytocin receptors (OXTR) was evaluated in these cells. The cellular viability was assessed 12 h post stimulation with OXT. The activation of OXTR-coupled intracellular signaling cascades, following OXT treatment was determined. Also, the influence of OXT on neurite outgrowth and cytoskeletal rearrangement were defined. The assessment of OXTR protein expression revealed this receptor is expressed abundantly in HFSCs. As evidenced by the cell viability assay, no adverse or cytotoxic effects were detected following 12 h treatment with different concentrations of OXT. Moreover, OXTR stimulation by OXT resulted in ERK1/2, CREB, and eEF2 activation, neurite length alterations, and cytoskeletal rearrangements that reveal the functionality of this receptor in HFSCs. Here, we introduced the rat HFSCs as an easy-to-obtain stem cell model that express functional OXTR. This cell-based model can contribute to our understanding of the progression and treatment of neuropsychiatric disorders with oxytocinergic system deficiency.

6.
J Stroke Cerebrovasc Dis ; 32(8): 107202, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37354874

RESUMEN

Although cell therapy has been applied in regenerative medicine for decades, recent years have seen greatly increased attention being given to the use of stem cell-based derivatives such as cell-free secretome. Dental pulp stem cells (DPSCs) are widely available, easily accessible, and have high neuroprotective and angiogenic properties. In addition, DPSC-derived secretome contains a rich mixture of trophic factors. The current investigation evaluated the short-term therapeutic effects of human DPSCs and their secretome in a rat model of mild ischemic stroke. Mild ischemic stroke was induced by 30 min middle cerebral artery occlusion, and hDPSCs or their secretome was administered intra-arterially and intranasally. Neurological function, infarct size, spatial working memory, and relative expression of seven target genes in two categories of neurotrophic and angiogenic factors were assessed three days after stroke. In the short-term, all treatments reduced the severity of neurological and histological deficits caused by ischemic stroke. Moreover, transient middle cerebral artery occlusion led to the striatal and cortical over-expression of BDNF, NT-3, and angiogenin, while NGF and VEGF expression was reduced. Almost all interventions were able to modulate the expression of target genes after stroke. The obtained data revealed that single intra-arterial administration of hDPSCs or their secretome, single intranasal transplantation of hDPSCs, or repeated intranasal administration of hDPSC-derived secretome was able to ameliorate the devastating effects of a mild stroke, at least in the short-term.


Asunto(s)
Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Ratas , Humanos , Animales , Infarto de la Arteria Cerebral Media/terapia , Pulpa Dental , Secretoma , Células Madre , Accidente Cerebrovascular/terapia
7.
Cell Prolif ; 56(7): e13397, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36631409

RESUMEN

The beneficial effects of hair follicle stem cells in different animal models of nervous system conditions have been extensively studied. While chick embryo extract (CEE) has been used as a growth medium supplement for these stem cells, this is the first study to show the effect of CEE on them. The rat hair follicle stem cells were isolated and supplemented with 10% fetal bovine serum plus 10% CEE. The migration rate, proliferative capacity and multipotency were evaluated along with morphometric alteration and differentiation direction. The proteome analysis of CEE content identified effective factors of CEE that probably regulate fate and function of stem cells. The CEE enhances the migration rate of stem cells from explanted bulges as well as their proliferation, likely due to activation of AP-1 and translationally controlled tumour protein (TCTP) by thioredoxin found in CEE. The increased length of outgrowth may be the result of cyclic AMP response element binding protein (CREB) phosphorylation triggered by active CamKII contained in CEE. Further, CEE supplementation upregulates the expression of vascular endothelial growth factor (VEGF), brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor. The elevated expression of target genes and proteins may be due to CREB, AP-1 and c-Myc activation in these stem cells. Given the increased transcript levels of neurotrophins, VEGF, and the expression of PDGFR-α, S100B, MBP and SOX-10 protein, it is possible that CEE promotes the fate of these stem cells towards Schwann cells.


Asunto(s)
Folículo Piloso , Factor A de Crecimiento Endotelial Vascular , Ratas , Embrión de Pollo , Animales , Factor A de Crecimiento Endotelial Vascular/farmacología , Factor de Transcripción AP-1/farmacología , Diferenciación Celular , Células de Schwann/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Células Madre/metabolismo , Células Cultivadas
8.
Mol Neurobiol ; 60(5): 2587-2601, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36694047

RESUMEN

The short-term therapeutic impacts of stem cells and their derivatives were frequently reported in preclinical investigations of ischemic stroke (IS); however, several drawbacks including accessibility, abundancy, and ethical concerns limited their clinical application. We describe here for the first time the therapeutic potential of human hair follicle-derived stem cells (hHFSCs) and their conditioned medium (CM) in a rat model of IS. Furthermore, we hypothesized that a combination of cell therapy with repeated CM administration might enhance the restorative efficiency of this approach compared to each treatment alone. Middle cerebral artery occlusion was performed for 30 min to induce IS. Immediately after reperfusion, hHFSCs were transplanted through the intra-arterial route and/or hHFSC-CM administered intranasally. The neurological outcomes, short-term spatial working memory, and infarct size were evaluated. Furthermore, relative expression of seven target genes in three categories of neuronal markers, synaptic markers, and angiogenic markers was assessed. The hHFSCs and hHFSC-CM treatments improved neurological impairments and reduced infarct size in the IS rats. Moreover, molecular data elucidated that IS was accompanied by attenuation in the expression of neuronal and synaptic markers in the evaluated brain regions and the interventions rescued these expression changes. Although there was no considerable difference between hHFSCs and hHFSC-CM treatments in the improvement of neurological function and decrement of infarct size, combination therapy was more effective to reduce infarction and elevation of target gene expression especially in the hippocampus. These findings highlight the curative potential of hHFSCs and their CM in a rat model of IS.


Asunto(s)
Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Humanos , Ratas , Animales , Medios de Cultivo Condicionados/farmacología , Folículo Piloso/metabolismo , Encéfalo/metabolismo , Accidente Cerebrovascular/metabolismo , Infarto de la Arteria Cerebral Media/terapia , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Células Madre/metabolismo , Accidente Cerebrovascular Isquémico/metabolismo , Modelos Animales de Enfermedad
9.
Front Cell Neurosci ; 16: 1000538, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36263085

RESUMEN

Oxytocin (OXT) is a neuropeptide that has been associated with neurological diseases like autism, a strong regulating activity on anxiety and stress-related behavior, physiological effects during pregnancy and parenting, and various cellular effects in neoplastic tissue. In this study, we aimed to unravel the underlying mechanism that OXT employs to regulate cell-cell contacts, spheroid formation, and cellular migration in a 3D culture model of human MLS-402 cells. We have generated a labeled OXT receptor (OXTR) overexpressing cell line cultivated in spheroids that were treated with the OXTR agonists OXT, Atosiban, and Thr4-Gly7-oxytocin (TGOT); with or without a pre-treatment of antisense oligos (Gapmers) that induce exon skipping in the human OXTR gene. This exon skipping leads to the exclusion of exon 4 and therefore a receptor that lost its intracellular G-protein-binding domain. Sensitive digital PCR (dPCR) provided us with the means to differentiate between wild type and truncated OXTR in our cellular model. OXTR truncation differentially activated intracellular signaling cascades related to cell-cell attachment and proliferation like Akt, ERK1/2-RSK1/2, HSP27, STAT1/5, and CREB, as assessed by a Kinase Profiler Assay. Digital and transmission electron microscopy revealed increased tight junction formation and well-organized cellular protrusions into an enlarged extracellular space after OXT treatment, resulting in increased cellular survival. In summary, OXT decreases cellular migration but increases cell-cell contacts and therefore improves nutrient supply. These data reveal a novel cellular effect of OXT that might have implications for degenerating CNS diseases and tumor formation in various tissues.

10.
Neuroreport ; 33(13): 561-568, 2022 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-36049161

RESUMEN

The middle cerebral artery occlusion (MCAO) model was introduced more than 3 decades ago to simulate human stroke. Till now, it is the most common platform to investigate stroke-induced pathological changes as well as to discover new drugs and treatments. Induction of general anesthesia is mandatory to induce this model, and different laboratories are using various anesthetic drugs, which might affect MCAO results. Therefore, the present study was designed to compare the impacts of several widely used anesthetic regimens on the MCAO outcomes. Here, adult male rats were anesthetized by isoflurane inhalation, intraperitoneal injection of chloral hydrate (CH), intraperitoneal injection of ketamine-xylazine, or subcutaneous administration of ketamine-xylazine, then subjected to 30 min MCAO. Survival rate, body weight change, infarct size, as well as cognitive and neurological performance were evaluated up to 3 days after the surgery. Our findings revealed CH caused the highest, whereas subcutaneous ketamine-xylazine led to the lowest mortality. Meanwhile, there were no significant differences in the body weight loss, infarct size, cognitive impairments, and neurological deficits among the experimental groups. Based on the current results, we proposed that subcutaneous injection of ketamine-xylazine could be an effective anesthetic regimen in the rat model of MCAO with several advantages such as low mortality, cost-effectiveness, safety, ease of administration, and not requiring specialized equipment.


Asunto(s)
Anestésicos , Isoflurano , Ketamina , Accidente Cerebrovascular , Anestésicos/farmacología , Animales , Humanos , Infarto de la Arteria Cerebral Media , Isoflurano/farmacología , Ketamina/farmacología , Masculino , Ratas , Xilazina/farmacología
12.
BMC Neurosci ; 23(1): 47, 2022 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-35879657

RESUMEN

BACKGROUND: Stem cell-based therapy has received considerable attention as a potential candidate in the treatment of ischemic stroke; however, employing an appropriate type of stem cells and an effective delivery route are still challenging. In the present study, we investigated the therapeutic effect of safe, noninvasive, and brain-targeted intranasal administration of hair follicle-derived stem cells (HFSCs) in a rat model of ischemic stroke. METHODS: Stem cells were obtained from the adult rat hair follicles. In experiment 1, stroke was induced by 30 min middle cerebral artery occlusion (MCAO) and stem cells were intranasally transplanted immediately after ischemia. In experiment 2, stroke was induced by 120 min MCAO and stem cells were administered 24 h after cerebral ischemia. In all experimental groups, neurological performance, short-term spatial working memory and infarct volume were assessed. Moreover, relative expression of major trophic factors in the striatum and cortex was evaluated by the quantitative PCR technique. The end point of experiment 1 was day 3 and the end point of experiment 2 was day 15. RESULTS: In both experiments, intranasal administration of HFSCs improved functional performance and decreased infarct volume compared to the MCAO rats. Furthermore, NeuN and VEGF expression were higher in the transplanted group and stem cell therapy partially prevented BDNF and neurotrophin-3 over-expression induced by cerebral ischemia. CONCLUSIONS: These findings highlight the curative potential of HFSCs following intranasal transplantation in a rat model of ischemic stroke.


Asunto(s)
Isquemia Encefálica , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Administración Intranasal , Animales , Isquemia Encefálica/terapia , Folículo Piloso , Infarto de la Arteria Cerebral Media/terapia , Ratas , Células Madre , Accidente Cerebrovascular/terapia
13.
Biol Reprod ; 107(2): 368-370, 2022 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-35470856

RESUMEN

Some studies have demonstrated that stroke may increase the risk of pregnancy complications and early menopause. In addition, preclinical investigations revealed the middle cerebral artery occlusion could affect hypothalamus. Since hypothalamus is the core of central circuits regulating reproductive processes, impairment of hypothalamic gonadotropin-releasing hormone neuronal network following stroke might be manifested in long-lasting reproductive disorders.


Asunto(s)
Hormona Liberadora de Gonadotropina , Accidente Cerebrovascular , Femenino , Hormona Liberadora de Gonadotropina/metabolismo , Humanos , Hipotálamo/metabolismo , Neuronas/metabolismo , Embarazo , Reproducción/fisiología , Accidente Cerebrovascular/complicaciones
14.
Neurosci Lett ; 773: 136511, 2022 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-35143889

RESUMEN

During the last 20 years, stem cell therapy has been considered as an effective approach for regenerative medicine. Due to poor ability of stem cells to survive following transplantation, it has been proposed that beneficial effects of stem cells mainly depend on paracrine function. Therefore, the present study was designed to reinforce mesenchymal stem cells (MSCs) to express higher levels of trophic factors especially the ones with the neurotrophic properties. Here, bone marrow (BM)-MSCs and adipose-MSCs were treated with conditioned medium (CM) of dental pulp stem cells (DPSCs) or hair follicle stem cells (HFSCs) for up to three days. The relative expression of five key trophic factors that have critical effects on the central nervous system regeneration were evaluated using qRT-PCR technique. Furthermore, to assess the impacts of conditioned mediums on the fate of MSCs, expression of seven neuronal/glial markers were evaluated 3 days after the treatments. The obtained data revealed priming of BM-MSCs with HFSC-CM or DPSC-CM increases the BDNF expression over time. Such effect was also observed in adipose-MSCs following DPSC-CM treatment. Secretome preconditioning remarkably increased NGF expression in the adipose-MSCs. In addition, although priming of adipose-MSCs with HFSC-CM increased GDNF expression one day after the treatment, DPSC-CM enhanced GDNF mRNA in BM-MSCs at a later time point. It seemed priming of BM-MSCs with HFSC-CM, promoted differentiation into the glial lineage. Our findings showed that MSCs preconditioning with secretome of neural crest-derived stem cells could be a promising approach to enhance the neurotrophic potential of these stem cells.


Asunto(s)
Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Diferenciación Celular , Medios de Cultivo Condicionados/farmacología , Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Cresta Neural , Secretoma , Células Madre
15.
Rev Neurosci ; 33(6): 583-606, 2022 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-35130375

RESUMEN

Intranasal delivery of stem cells and conditioned medium to target the brain has attracted major interest in the field of regenerative medicine. In pre-clinical investigations during the last ten years, several research groups focused on this strategy to treat cerebral hypoxia/ischemia in neonates as well as adults. In this review, we discuss the curative potential of stem cells, stem cell derivatives, and their delivery route via intranasal application to the hypoxic/ischemic brain. After intranasal application, stem cells migrate from the nasal cavity to the injured area and exert therapeutic effects by reducing brain tissue loss, enhancing endogenous neurogenesis, and modulating cerebral inflammation that leads to functional improvements. However, application of this administration route for delivering stem cells and/or therapeutic substances to the damaged sites requires further optimization to translate the findings of animal experiments to clinical trials.


Asunto(s)
Hipoxia-Isquemia Encefálica , Administración Intranasal , Animales , Encéfalo , Humanos , Hipoxia-Isquemia Encefálica/terapia , Neurogénesis , Células Madre
16.
Stem Cell Rev Rep ; 18(2): 412-440, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34033001

RESUMEN

The last two decades have witnessed a surge in investigations proposing stem cells as a promising strategy to treat stroke. Since growth factor release is considered as one of the most important aspects of cell-based therapy, stem cells over-expressing growth factors are hypothesized to yield higher levels of therapeutic efficiency. In pre-clinical studies of the last 15 years that were investigating the efficiency of stem cell therapy for stroke, a variety of stem cell types were genetically modified to over-express various factors. In this review we summarize the current knowledge on the therapeutic efficiency of stem cell-derived growth factors, encompassing techniques employed and time points to evaluate. In addition, we discuss several types of stem cells, including the recently developed model of epidermal neural crest stem cells, and genetically modified stem cells over-expressing specific factors, which could elevate the restorative potential of naive stem cells. The restorative potential is based on enhanced survival/differentiation potential of transplanted cells, apoptosis inhibition, infarct volume reduction, neovascularization or functional improvement. Since the majority of studies have focused on the short-term curative effects of genetically engineered stem cells, we emphasize the need to address their long-term impact.


Asunto(s)
Trasplante de Células Madre , Accidente Cerebrovascular , Diferenciación Celular/fisiología , Humanos , Cresta Neural/metabolismo , Trasplante de Células Madre/métodos , Accidente Cerebrovascular/genética , Accidente Cerebrovascular/metabolismo , Accidente Cerebrovascular/terapia
17.
Annu Rev Pharmacol Toxicol ; 62: 25-53, 2022 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-33606962

RESUMEN

In December 2019, a novel coronavirus crossed species barriers to infect humans and was effectively transmitted from person to person, leading to a worldwide pandemic. Development of effective clinical interventions, including vaccines and antiviral drugs that could prevent or limit theburden or transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a global health priority. It is thus of utmost importance to assess possible therapeutic strategies against SARS-CoV-2 using experimental models that recapitulate aspects of the human disease. Here, we review available models currently being developed and used to study SARS-CoV-2 infection and highlight their application to screen potential therapeutic approaches, including repurposed antiviral drugs and vaccines. Each identified model provides a valuable insight into SARS-CoV-2 cellular tropism, replication kinetics, and cell damage that could ultimately enhance understanding of SARS-CoV-2 pathogenesis and protective immunity.


Asunto(s)
COVID-19 , Antivirales/farmacología , Antivirales/uso terapéutico , Humanos , Modelos Teóricos , Pandemias , SARS-CoV-2
18.
Brain Res ; 1776: 147750, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-34896332

RESUMEN

INTRODUCTION: The incidence rate of senile dementia is rising, and there is no definite cure for it yet. Cell therapy, as a new investigational approach, has shown promising results. Hair bulges with abundant easily accessible neural stem cells permit autologous implantation in irreversible neurodegenerative disorders. METHODS: Fifty rats were randomly divided into 5 groups of control, sham-operation, two-common carotid vessel-occlusion rats that received vehicle (2VO + V), 2VO rats that received 1 × 106 epidermal stem cells (2VO + ESC1), and 2VO rats that received 2.5 × 106 epidermal stem cells (2VO + ESC2) in 300 µl PBS intravenously on days 4, 9, and 14 after surgery. The epidermal neural crest stem cells (EPI-NCSCs) were isolated from hair follicles of rat whiskers. The open-field, passive avoidance, and Morris water maze were used as behavioral tests. The basal-synaptic transmission, long-term potentiation (LTP), and short-term synaptic plasticity were evaluated by field-potential recording of the CA1 hippocampal area. RESULTS: 30 days after the first transplantation in the 2VO + ESC1 group, functional recovery was prominent in anxiety and fear memory compared to the 2VO + ESC2 group, while LTP induction was recovered in both groups of grafted animals without improvement in basal synaptic transmission. These positive recoveries may be related to the release of different neurotrophic factors from grafted cells that can stimulate endogenous neurogenesis and synaptic plasticity. CONCLUSIONS: Our results showed that EPI-NCSCs implantation could rescue LTP and cognitive disability in 2VO rats, while transplantation of 1 million cells showed better performance relative to 2.5 million cells.


Asunto(s)
Demencia Vascular/terapia , Cresta Neural/citología , Células-Madre Neurales/trasplante , Neuroprotección/fisiología , Trasplante de Células Madre/métodos , Animales , Reacción de Prevención/fisiología , Demencia Vascular/fisiopatología , Modelos Animales de Enfermedad , Aprendizaje por Laberinto/fisiología , Ratas , Transmisión Sináptica/fisiología
19.
Tissue Cell ; 74: 101707, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34883315

RESUMEN

Despite the regenerative potential of stem cell therapy in pre-clinical investigations, clinical translation of cell-based therapy has not been completely clarified. In recent years, the importance of lifestyle, patient comorbidities, and prescribed medication has attracted more attention in the efficacy of cell therapy. As a nonsteroidal anti-inflammatory drug, aspirin is one of the most prevalent prescribed medications in the clinic for various disorders. Hence, aspirin treatment might affect the efficacy of stem cell therapy. In this regard, the current review focused on the impacts of aspirin on the viability, proliferation, differentiation, and immunomodulatory properties of stem cells in vitro as well as in experimental animal models.


Asunto(s)
Antiinflamatorios no Esteroideos/uso terapéutico , Aspirina/uso terapéutico , Diferenciación Celular/efectos de los fármacos , Trasplante de Células Madre , Células Madre/metabolismo , Animales , Humanos
20.
Int J Mol Sci ; 22(16)2021 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-34445168

RESUMEN

Oxytocin (OXT) is a neuropeptide involved in a plethora of behavioral and physiological processes. However, there is a prominent lack of 3D cell culture models that investigate the effects of OXT on a cellular/molecular level. In this study, we established a hypothalamic neuronal spheroid model to investigate the cellular response in a more realistic 3D setting. Our data indicate that the formation of spheroids itself does not alter the basic characteristics of the cell line and that markers of cellular morphology and connectivity are stably expressed. We found that both OXT and arginine vasopressin (AVP) treatment increase spheroid size (surface area and volume), as well as individual nucleus size, which serves as an indicator for cellular proliferation. The cellular response to both OXT and AVP seems mainly to be mediated by the AVP receptor 1a (V1aR); however, the OXT receptor (OXTR) contributes significantly to the observed proliferative effect. When we blocked the OXTR pharmacologically or knocked down the OXTR by siRNA, the OXT- or AVP-induced cellular proliferation decreased. In summary, we established a 3D cell culture model of the neuronal response to OXT and AVP and found that spheroids react to the treatment via their respective receptors but also via cross-talk between the two receptor types.


Asunto(s)
Hipotálamo/citología , Receptores de Oxitocina/metabolismo , Receptores de Vasopresinas/metabolismo , Animales , Arginina Vasopresina/metabolismo , Línea Celular , Proliferación Celular , Hipotálamo/metabolismo , Oxitocina/metabolismo , Ratas , Esferoides Celulares/citología , Esferoides Celulares/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...