Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 115(46): 11772-11777, 2018 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-30373827

RESUMEN

Fluctuation X-ray scattering (FXS) is an emerging experimental technique in which X-ray solution scattering data are collected from particles in solution using ultrashort X-ray exposures generated by a free-electron laser (FEL). FXS experiments overcome the low data-to-parameter ratios associated with traditional solution scattering measurements by providing several orders of magnitude more information in the final processed data. Here we demonstrate the practical feasibility of FEL-based FXS on a biological multiple-particle system and describe data-processing techniques required to extract robust FXS data and significantly reduce the required number of snapshots needed by introducing an iterative noise-filtering technique. We showcase a successful ab initio electron density reconstruction from such an experiment, studying the Paramecium bursaria Chlorella virus (PBCV-1).


Asunto(s)
Cristalografía por Rayos X/métodos , Espectroscopía de Fotoelectrones/métodos , Chlorella , Cristalografía por Rayos X/estadística & datos numéricos , Espectroscopía de Fotoelectrones/estadística & datos numéricos , Radiografía/estadística & datos numéricos , Proyectos de Investigación , Dispersión de Radiación , Difracción de Rayos X , Rayos X
2.
Sci Data ; 5: 180201, 2018 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-30277481

RESUMEN

Fluctuation X-ray scattering (FXS) is an emerging experimental technique in which solution scattering data are collected using X-ray exposures below rotational diffusion times, resulting in angularly anisotropic X-ray snapshots that provide several orders of magnitude more information than traditional solution scattering data. Such experiments can be performed using the ultrashort X-ray pulses provided by a free-electron laser source, allowing one to collect a large number of diffraction patterns in a relatively short time. Here, we describe a test data set for FXS, obtained at the Linac Coherent Light Source, consisting of close to 100 000 multi-particle diffraction patterns originating from approximately 50 to 200 Paramecium Bursaria Chlorella virus particles per snapshot. In addition to the raw data, a selection of high-quality pre-processed diffraction patterns and a reference SAXS profile are provided.


Asunto(s)
Phycodnaviridae , Dispersión del Ángulo Pequeño , Difracción de Rayos X
3.
BMC Biol ; 16(1): 59, 2018 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-29848358

RESUMEN

BACKGROUND: Ever since the first atomic structure of an enzyme was solved, the discovery of the mechanism and dynamics of reactions catalyzed by biomolecules has been the key goal for the understanding of the molecular processes that drive life on earth. Despite a large number of successful methods for trapping reaction intermediates, the direct observation of an ongoing reaction has been possible only in rare and exceptional cases. RESULTS: Here, we demonstrate a general method for capturing enzyme catalysis "in action" by mix-and-inject serial crystallography (MISC). Specifically, we follow the catalytic reaction of the Mycobacterium tuberculosis ß-lactamase with the third-generation antibiotic ceftriaxone by time-resolved serial femtosecond crystallography. The results reveal, in near atomic detail, antibiotic cleavage and inactivation from 30 ms to 2 s. CONCLUSIONS: MISC is a versatile and generally applicable method to investigate reactions of biological macromolecules, some of which are of immense biological significance and might be, in addition, important targets for structure-based drug design. With megahertz X-ray pulse rates expected at the Linac Coherent Light Source II and the European X-ray free-electron laser, multiple, finely spaced time delays can be collected rapidly, allowing a comprehensive description of biomolecular reactions in terms of structure and kinetics from the same set of X-ray data.


Asunto(s)
Antibacterianos/química , Proteínas Bacterianas/química , Ceftriaxona/química , Cristalografía por Rayos X/métodos , Mycobacterium tuberculosis/enzimología , beta-Lactamasas/química , Proteínas Bacterianas/genética , Biocatálisis , Resistencia a las Cefalosporinas/genética , Cinética , Rayos Láser , Modelos Moleculares , Factores de Tiempo , beta-Lactamasas/genética
4.
Light Sci Appl ; 7: 17162, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30839543

RESUMEN

Multilayer Laue lenses are volume diffraction elements for the efficient focusing of X-rays. With a new manufacturing technique that we introduced, it is possible to fabricate lenses of sufficiently high numerical aperture (NA) to achieve focal spot sizes below 10 nm. The alternating layers of the materials that form the lens must span a broad range of thicknesses on the nanometer scale to achieve the necessary range of X-ray deflection angles required to achieve a high NA. This poses a challenge to both the accuracy of the deposition process and the control of the materials properties, which often vary with layer thickness. We introduced a new pair of materials-tungsten carbide and silicon carbide-to prepare layered structures with smooth and sharp interfaces and with no material phase transitions that hampered the manufacture of previous lenses. Using a pair of multilayer Laue lenses (MLLs) fabricated from this system, we achieved a two-dimensional focus of 8.4 × 6.8 nm2 at a photon energy of 16.3 keV with high diffraction efficiency and demonstrated scanning-based imaging of samples with a resolution well below 10 nm. The high NA also allowed projection holographic imaging with strong phase contrast over a large range of magnifications. An error analysis indicates the possibility of achieving 1 nm focusing.

5.
IUCrJ ; 4(Pt 6): 769-777, 2017 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-29123679

RESUMEN

Unravelling the interaction of biological macromolecules with ligands and substrates at high spatial and temporal resolution remains a major challenge in structural biology. The development of serial crystallography methods at X-ray free-electron lasers and subsequently at synchrotron light sources allows new approaches to tackle this challenge. Here, a new polyimide tape drive designed for mix-and-diffuse serial crystallography experiments is reported. The structure of lysozyme bound by the competitive inhibitor chitotriose was determined using this device in combination with microfluidic mixers. The electron densities obtained from mixing times of 2 and 50 s show clear binding of chitotriose to the enzyme at a high level of detail. The success of this approach shows the potential for high-throughput drug screening and even structural enzymology on short timescales at bright synchrotron light sources.

6.
Phys Rev Lett ; 119(15): 158102, 2017 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-29077445

RESUMEN

We use extremely bright and ultrashort pulses from an x-ray free-electron laser (XFEL) to measure correlations in x rays scattered from individual bioparticles. This allows us to go beyond the traditional crystallography and single-particle imaging approaches for structure investigations. We employ angular correlations to recover the three-dimensional (3D) structure of nanoscale viruses from x-ray diffraction data measured at the Linac Coherent Light Source. Correlations provide us with a comprehensive structural fingerprint of a 3D virus, which we use both for model-based and ab initio structure recovery. The analyses reveal a clear indication that the structure of the viruses deviates from the expected perfect icosahedral symmetry. Our results anticipate exciting opportunities for XFEL studies of the structure and dynamics of nanoscale objects by means of angular correlations.


Asunto(s)
Virus/ultraestructura , Difracción de Rayos X , Rayos Láser , Radiografía , Virus/química
7.
J Appl Crystallogr ; 50(Pt 4): 1084-1103, 2017 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-28808434

RESUMEN

The intensities of far-field diffraction patterns of orientationally aligned molecules obey Wilson statistics, whether those molecules are in isolation (giving rise to a continuous diffraction pattern) or arranged in a crystal (giving rise to Bragg peaks). Ensembles of molecules in several orientations, but uncorrelated in position, give rise to the incoherent sum of the diffraction from those objects, modifying the statistics in a similar way as crystal twinning modifies the distribution of Bragg intensities. This situation arises in the continuous diffraction of laser-aligned molecules or translationally disordered molecular crystals. This paper develops the analysis of the intensity statistics of such continuous diffraction to obtain parameters such as scaling, beam coherence and the number of contributing independent object orientations. When measured, continuous molecular diffraction is generally weak and accompanied by a background that far exceeds the strength of the signal. Instead of just relying upon the smallest measured intensities or their mean value to guide the subtraction of the background, it is shown how all measured values can be utilized to estimate the background, noise and signal, by employing a modified 'noisy Wilson' distribution that explicitly includes the background. Parameters relating to the background and signal quantities can be estimated from the moments of the measured intensities. The analysis method is demonstrated on previously published continuous diffraction data measured from crystals of photosystem II [Ayyer et al. (2016 ▸), Nature, 530, 202-206].

8.
Struct Dyn ; 4(4): 044003, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28083542

RESUMEN

Mix-and-inject serial crystallography (MISC) is a technique designed to image enzyme catalyzed reactions in which small protein crystals are mixed with a substrate just prior to being probed by an X-ray pulse. This approach offers several advantages over flow cell studies. It provides (i) room temperature structures at near atomic resolution, (ii) time resolution ranging from microseconds to seconds, and (iii) convenient reaction initiation. It outruns radiation damage by using femtosecond X-ray pulses allowing damage and chemistry to be separated. Here, we demonstrate that MISC is feasible at an X-ray free electron laser by studying the reaction of M. tuberculosis ß-lactamase microcrystals with ceftriaxone antibiotic solution. Electron density maps of the apo-ß-lactamase and of the ceftriaxone bound form were obtained at 2.8 Å and 2.4 Å resolution, respectively. These results pave the way to study cyclic and non-cyclic reactions and represent a new field of time-resolved structural dynamics for numerous substrate-triggered biological reactions.

9.
Sci Rep ; 6: 35279, 2016 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-27756898

RESUMEN

Phytochromes are a family of photoreceptors that control light responses of plants, fungi and bacteria. A sequence of structural changes, which is not yet fully understood, leads to activation of an output domain. Time-resolved serial femtosecond crystallography (SFX) can potentially shine light on these conformational changes. Here we report the room temperature crystal structure of the chromophore-binding domains of the Deinococcus radiodurans phytochrome at 2.1 Å resolution. The structure was obtained by serial femtosecond X-ray crystallography from microcrystals at an X-ray free electron laser. We find overall good agreement compared to a crystal structure at 1.35 Å resolution derived from conventional crystallography at cryogenic temperatures, which we also report here. The thioether linkage between chromophore and protein is subject to positional ambiguity at the synchrotron, but is fully resolved with SFX. The study paves the way for time-resolved structural investigations of the phytochrome photocycle with time-resolved SFX.


Asunto(s)
Cristalografía por Rayos X , Deinococcus/química , Fitocromo/química , Conformación Proteica , Cristalización , Temperatura
10.
Science ; 352(6286): 725-9, 2016 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-27151871

RESUMEN

A variety of organisms have evolved mechanisms to detect and respond to light, in which the response is mediated by protein structural changes after photon absorption. The initial step is often the photoisomerization of a conjugated chromophore. Isomerization occurs on ultrafast time scales and is substantially influenced by the chromophore environment. Here we identify structural changes associated with the earliest steps in the trans-to-cis isomerization of the chromophore in photoactive yellow protein. Femtosecond hard x-ray pulses emitted by the Linac Coherent Light Source were used to conduct time-resolved serial femtosecond crystallography on photoactive yellow protein microcrystals over a time range from 100 femtoseconds to 3 picoseconds to determine the structural dynamics of the photoisomerization reaction.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/efectos de la radiación , Procesos Fotoquímicos , Fotorreceptores Microbianos/química , Fotorreceptores Microbianos/efectos de la radiación , Cristalografía , Isomerismo , Luz , Fotones , Conformación Proteica/efectos de la radiación , Factores de Tiempo
11.
Struct Dyn ; 2(4): 041708, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26798807

RESUMEN

About 2.5 × 10(6) snapshots on microcrystals of photoactive yellow protein (PYP) from a recent serial femtosecond crystallographic (SFX) experiment were reanalyzed to maximum resolution. The resolution is pushed to 1.46 Å, and a PYP structural model is refined at that resolution. The result is compared to other PYP models determined at atomic resolution around 1 Å and better at the synchrotron. By comparing subtleties such as individual isotropic temperature factors and hydrogen bond lengths, we were able to assess the quality of the SFX data at that resolution. We also show that the determination of anisotropic temperature factor ellipsoids starts to become feasible with the SFX data at resolutions better than 1.5 Å.

12.
Science ; 346(6214): 1242-6, 2014 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-25477465

RESUMEN

Serial femtosecond crystallography using ultrashort pulses from x-ray free electron lasers (XFELs) enables studies of the light-triggered dynamics of biomolecules. We used microcrystals of photoactive yellow protein (a bacterial blue light photoreceptor) as a model system and obtained high-resolution, time-resolved difference electron density maps of excellent quality with strong features; these allowed the determination of structures of reaction intermediates to a resolution of 1.6 angstroms. Our results open the way to the study of reversible and nonreversible biological reactions on time scales as short as femtoseconds under conditions that maximize the extent of reaction initiation throughout the crystal.


Asunto(s)
Proteínas Bacterianas/ultraestructura , Cristalografía por Rayos X/métodos , Fotorreceptores Microbianos/ultraestructura , Proteínas Bacterianas/química , Fotorreceptores Microbianos/química , Conformación Proteica , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...