Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Am J Cancer Res ; 13(6): 2452-2470, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37424808

RESUMEN

Overexpression of cytokine receptor-like factor 2 (CRLF2) resulting from its genomic rearrangement is the most frequent genetic alteration found in Philadelphia chromosome-like (Ph-like) B-cell acute lymphoblastic leukemia (B-ALL), a high-risk leukemia. Detection of CRLF2 expression by multiparameter flow cytometry has been proposed as a screening tool for the identification of Ph-like B-ALL. However, the prognostic relevance of flow cytometric expression of CRLF2 in pediatric B-ALL is not very clear. Additionally, its association with common copy number alterations (CNA) has not been studied in detail. Hence, in this study, we prospectively evaluated the flow cytometric expression of CRLF2 in 256 pediatric B-ALL patients and determined its association with molecular features such as common CNAs detected using Multiplex ligation-dependent probe amplification and mutations in CRLF2, JAK2 and IL7RA genes. Further, its association with clinicopathological features including patient outcome was assessed. We found that 8.59% (22/256) pediatric B-ALL patients were CRLF2-positive at diagnosis. Among CNAs, CRLF2 positivity was associated with presence of PAX5 alteration (P=0.041). JAK2 and IL-7R mutations were found in 9% and 13.6% CRLF2-positive patients, respectively. IGH::CRLF2 or P2RY8::CRLF2 fusions were each found in 1/22 individuals. CRLF2-positive patients were found to have inferior overall (hazard ratio (HR) =4.39, P=0.006) and event free survival (HR=2.62, P=0.045), independent to other clinical features. Furthermore, concomitant CNA of IKZF1 in CRLF2 positive patients was associated with a greater hazard for poor overall and event free survival, compared to patients without these alterations or presence of any one of them. Our findings demonstrate that the surface CRLF2 expression in association with IKZF1 copy number alteration can be used to risk stratify pediatric B-ALL patients.

2.
Am J Blood Res ; 13(1): 28-43, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36937459

RESUMEN

BACKGROUND: Acute myeloid leukemia with normal cytogenetics (CN-AML) is the largest group of AML patients with very heterogenous patient outcomes. The revised World Health Organization classification of the hematolymphoid tumours, 2022, has incorporated AML with Nucleophosphmin1 (NPM1) and CCAAT/enhancer binding protein-alpha (CEBPA) mutations as distinct entities. Despite the existing evidence of the prognostic relevance of FMS-like tyrosine kinase-3 internal tandem duplication (FLT3-ITD) in AML, it has not been included in the revised classification. METHOD: In this prospective study, we determined the prevalence of NPM1, CEBPA, and FLT3 gene mutations in 151 de novo CN-AML adult patients (age ≥18 years) in a tertiary care hospital in north India. Additionally, the prognostic relevance of these mutations was also evaluated. RESULTS: NPM1, FLT3-ITD, and CEBPA mutations were found in 33.11%, 23.84%, and 15.77% of CN-AML patients, respectively. CEBPA mutations were found at 3 domains: transactivation domain 1 (TAD1) in 10 (6.62%), transactivation domain 2 (TAD2) in 5 (3.31%), and basic leucine zipper domain (bZIP) in 11 (7.82%) patients. Patients with NPM1 mutation had better clinical remission rate (CR) (P=0.003), event-free survival (P=0.0014), and overall survival (OS) (P=0.0017). However, FLT3-ITD and CEBPA mutations did not show any association with CR (P=0.404 and 0.92, respectively). Biallelic CEBPA mutations were found in 12 (7.95%) patients and were associated with better OS (P=0.043). CONCLUSIONS: These findings indicate that NPM1 and CEBPA mutations can be precisely used for risk stratification in CN-AML patients.

3.
CNS Neurol Disord Drug Targets ; 22(1): 84-97, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35352654

RESUMEN

Due to rising environmental and global public health concerns associated with environmental contamination, human populations are continually being exposed to environmental toxicants, including physical chemical mutagens widespread in our environment causing adverse consequences and inducing a variety of neurological disorders in humans. Physical mutagens comprise ionizing and non-ionizing radiation, such as UV rays, IR rays, X-rays, which produces a broad spectrum of neuronal destruction, including neuroinflammation, genetic instability, enhanced oxidative stress driving mitochondrial damage in the human neuronal antecedent cells, cognitive impairment due to alterations in neuronal function, especially in synaptic plasticity, neurogenesis repression, modifications in mature neuronal networks drives to enhanced neurodegenerative risk. Chemical Mutagens including alkylating agents (EMS, NM, MMS, and NTG), Hydroxylamine, nitrous acid, sodium azide, halouracils are the major toxic mutagen in our environment and have been associated with neurological disorders. These chemical mutagens create dimers of pyrimidine that cause DNA damage that leads to ROS generation producing mutations, chromosomal abnormalities, genotoxicity which leads to increased neurodegenerative risk. The toxicity of four heavy metal including Cd, As, Pb, Hg is mostly responsible for complicated neurological disorders in humans. Cadmium exposure can enhance the permeability of the BBB and penetrate the brain, driving brain intracellular accumulation, cellular dysfunction, and cerebral edema. Arsenic exerts its toxic effect by induction of ROS production in neuronal cells. In this review, we summarize the molecular mechanism and mechanistic effects of mutagens in the environment and their role in multiple neurological disorders.


Asunto(s)
Enfermedades del Sistema Nervioso , Humanos , Enfermedades del Sistema Nervioso/inducido químicamente
4.
Hematol Oncol ; 40(4): 577-587, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35644022

RESUMEN

T-cell acute lymphoblastic leukemia (T-ALL) is a genetically heterogeneous disease, characterized by an abnormal transformation of T cells into highly proliferative leukemic lymphoblasts. Identification of common genetic alterations has provided promising opportunities for better risk stratification in T-ALL. Current treatment in T-ALL still poses the major challenge of integrating the knowledge of molecular alterations in the clinical setting. We utilized the Multiplex Ligation Dependent Probe Amplification (MLPA) method to determine the frequency of common copy number alterations (CNAs) in 128 newly diagnosed T-ALL patients. We also studied the association of these CNAs with patient's clinical characteristics and survival. The highest frequency of deletion was observed in CDKN2A (59.38%), followed by CDKN2B (46.88%), LMO1 (37.5%), and MTAP (28.12%). PTPN2 (22.66%), PHF6 (14.06%), and MYB (14.06%) had the highest number of duplication events. A total of 89.06% patients exhibited CNAs. STIL::TAL1, NUP214::ABL1, and LMO2::RAG2 fusions were observed in 5.47%, 3.12%, and 0.78% of patients, respectively. CDKN2A, CDKN2B, and PTPN2 gene deletions were mainly observed in pediatric patients, while CNAs of NF1 and SUZ12 were observed more frequently in adults. In pediatric patients, alterations in CDKN2B, CASP8AP2, and AHI1 were associated with poor prognosis, while SUZ12 and NF1 CNAs were associated with favorable prognosis. In adult patients, ABL1 CNA emerged as an independent indicator of poor prognosis. The observed molecular heterogeneity in T-ALL may provide the basis for variations observed in clinical response in T-ALL and MLPA based CNA detection may help in risk stratification of these patients.


Asunto(s)
Leucemia-Linfoma Linfoblástico de Células T Precursoras , Adulto , Niño , Variaciones en el Número de Copia de ADN , Humanos , Mutación , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Pronóstico , Proteína Tirosina Fosfatasa no Receptora Tipo 2/genética
5.
Environ Sci Pollut Res Int ; 29(41): 61993-62013, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34410595

RESUMEN

Environmental mutagens are chemical and physical substances in the environment that has a potential to induce a wide range of mutations and generate multiple physiological, biochemical, and genetic modifications in humans. Most mutagens are having genotoxic effects on the following generation through germ cells. The influence of germinal mutations on health will be determined by their frequency, nature, and the mechanisms that keep a specific mutation in the population. Early prenatal lethal mutations have less public health consequences than genetic illnesses linked with long-term medical and social difficulties. Physical and chemical mutagens are common mutagens found in the environment. These two environmental mutagens have been associated with multiple neurological disorders and carcinogenesis in humans. Thus in this study, we aim to unravel the molecular mechanism of physical mutagens (UV rays, X-rays, gamma rays), chemical mutagens (dimethyl sulfate (DMS), bisphenol A (BPA), polycyclic aromatic hydrocarbons (PAHs), 5-chlorocytosine (5ClC)), and several heavy metals (Ar, Pb, Al, Hg, Cd, Cr) implicated in DNA damage, carcinogenesis, chromosomal abnormalities, and oxidative stress which leads to multiple disorders and impacting human health. Biological tests for mutagen detection are crucial; therefore, we also discuss several approaches (Ames test and Mutatox test) to estimate mutagenic factors in the environment. The potential risks of environmental mutagens impacting humans require a deeper basic knowledge of human genetics as well as ongoing research on humans, animals, and their tissues and fluids.


Asunto(s)
Mutágenos , Hidrocarburos Policíclicos Aromáticos , Animales , Carcinogénesis , Daño del ADN , Humanos , Mutagénesis , Pruebas de Mutagenicidad , Mutágenos/química , Mutágenos/toxicidad , Hidrocarburos Policíclicos Aromáticos/toxicidad
6.
Cureus ; 14(12): e32151, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36601176

RESUMEN

The molecular heterogeneity of T-cell acute lymphoblastic leukemia (T-ALL) makes this disease complex. Early T-cell precursor ALL (ETP-ALL) is a recognized subtype of T-ALL associated with a high probability of induction failure with conventional therapy. Higher expression of myocyte enhancer factor 2C (MEF2C) and the absence of a biallelic deletion (ABD) are the designated markers for the ETP-ALL. Co-deletion of the contiguous genes cyclin-dependent kinase inhibitor 2A/2B (CDKN2A/2B) and the methylthioadenosine phosphorylase (MTAP) cluster, located at 9p21.3, is another common alteration in T-ALL and confers poor response to treatment. We used real-time polymerase chain reaction (PCR) analysis to assess MEF2C mRNA expression and ABD status. Copy number alterations (CNAs) in key genes previously reported to be altered in T-ALL were assessed using multiple ligation probe amplification (MLPA). We observed that CNAs in this co-deletion cluster of CDKN2A/B and MTAP genes exhibited low MEF2C expression while ABD was associated with CNA in the Abelson murine leukemia 1 (ABL1) gene. Assessment of MEF2C expression based on immunophenotype revealed that its association with CDKN2A/2B alteration is present in non-immature immunophenotype. Additionally, ABD was associated with copy number alterations of T-cell acute lymphocytic leukemia protein 1 (TAL1), myeloblastosis (MYB), and LIM domain only 2 (LMO2) genes in immature immunophenotypes. Further, STIL::TAL1 fusion was associated with low expression of MEF2C. These associations may help explain the difficulties in assessing disease heterogeneity and the prognostic importance of 9p21.3 alterations in T-ALL.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...