Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Mol Cancer ; 22(1): 62, 2023 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-36991452

RESUMEN

Molecularly targeted cancer therapies substantially improve patient outcomes, although the durability of their effectiveness can be limited. Resistance to these therapies is often related to adaptive changes in the target oncoprotein which reduce binding affinity. The arsenal of targeted cancer therapies, moreover, lacks coverage of several notorious oncoproteins with challenging features for inhibitor development. Degraders are a relatively new therapeutic modality which deplete the target protein by hijacking the cellular protein destruction machinery. Degraders offer several advantages for cancer therapy including resiliency to acquired mutations in the target protein, enhanced selectivity, lower dosing requirements, and the potential to abrogate oncogenic transcription factors and scaffolding proteins. Herein, we review the development of proteolysis targeting chimeras (PROTACs) for selected cancer therapy targets and their reported biological activities. The medicinal chemistry of PROTAC design has been a challenging area of active research, but the recent advances in the field will usher in an era of rational degrader design.


Asunto(s)
Neoplasias , Proteínas Oncogénicas , Humanos , Proteolisis , Proteínas Oncogénicas/metabolismo , Factores de Transcripción/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/genética
2.
Front Oncol ; 12: 850883, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35463312

RESUMEN

The vast majority of cancer patients receive DNA-damaging drugs or ionizing radiation (IR) during their course of treatment, yet the efficacy of these therapies is tempered by DNA repair and DNA damage response (DDR) pathways. Aberrations in DNA repair and the DDR are observed in many cancer subtypes and can promote de novo carcinogenesis, genomic instability, and ensuing resistance to current cancer therapy. Additionally, stalled or collapsed DNA replication forks present a unique challenge to the double-strand DNA break (DSB) repair system. Of the various inducible DNA lesions, DSBs are the most lethal and thus desirable in the setting of cancer treatment. In mammalian cells, DSBs are typically repaired by the error prone non-homologous end joining pathway (NHEJ) or the high-fidelity homology directed repair (HDR) pathway. Targeting DSB repair pathways using small molecular inhibitors offers a promising mechanism to synergize DNA-damaging drugs and IR while selective inhibition of the NHEJ pathway can induce synthetic lethality in HDR-deficient cancer subtypes. Selective inhibitors of the NHEJ pathway and alternative DSB-repair pathways may also see future use in precision genome editing to direct repair of resulting DSBs created by the HDR pathway. In this review, we highlight the recent advances in the development of inhibitors of the non-phosphatidylinositol 3-kinase-related kinases (non-PIKKs) members of the NHEJ, HDR and minor backup SSA and alt-NHEJ DSB-repair pathways. The inhibitors described within this review target the non-PIKKs mediators of DSB repair including Ku70/80, Artemis, DNA Ligase IV, XRCC4, MRN complex, RPA, RAD51, RAD52, ERCC1-XPF, helicases, and DNA polymerase θ. While the DDR PIKKs remain intensely pursued as therapeutic targets, small molecule inhibition of non-PIKKs represents an emerging opportunity in drug discovery that offers considerable potential to impact cancer treatment.

3.
Eur J Med Chem ; 132: 204-218, 2017 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-28363155

RESUMEN

A series of seventeen piperazine derivatives have been synthesized and biologically evaluated for the management of andropause-associated prostatic disorders and depression. Five compounds 16, 19, 20, 21 and 22 significantly inhibited proliferation of androgen-sensitive LNCaP prostatic cell line with EC50 values of 12.4 µM, 15.6 µM, 11.8 µM, 10.4 µM, 12.2 µM respectively and decreased Ca2+ entry through adrenergic-receptor α1A blocking activity. Anti-androgenic behaviour of compound 19 and 22 was evident by decreased luciferase activity. The high EC50 value in AR-negative cells PC3 and DU145 suggested that the cytotoxicity of compounds was due to AR down regulation. Compound 19 reduced the prostate weight of rats by 53.8%. Further, forced-swimming and tail-suspension tests revealed antidepressant-like activity of compound 19, lacking effects on neuromuscular co-ordination. In silico ADMET predictions revealed that the compound 19 had good oral absorption, aqueous solubility, non-hepatotoxic and good affinity for plasma protein binding. Pharmacokinetic and tissue uptake of 19 at 10 mg/kg demonstrated an oral bioavailability of 35.4%. In silico docking studies predicted similar binding pattern of compound 19 on androgen receptor as hydroxyflutamide. Compound 19 appears to be a unique scaffold with promising activities against androgen associated prostatic disorders in males like prostate cancer and BPH and associated depression.


Asunto(s)
Antagonistas de Andrógenos/síntesis química , Andropausia , Depresión/tratamiento farmacológico , Piperazinas/farmacocinética , Enfermedades de la Próstata/tratamiento farmacológico , Antagonistas de Andrógenos/farmacología , Animales , Línea Celular , Regulación hacia Abajo/efectos de los fármacos , Humanos , Masculino , Simulación del Acoplamiento Molecular , Piperazina , Piperazinas/síntesis química , Piperazinas/química , Ratas , Receptores Androgénicos/efectos de los fármacos
4.
Int J Antimicrob Agents ; 47(1): 36-47, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26706422

RESUMEN

Chemical attenuation of the reactive oxygen species (ROS)-sensitive anaerobes Trichomonas vaginalis, which is the most prevalent non-viral sexually transmitted infection, and two often coexisting vaginal infections, namely Candida albicans and Staphylococcus aureus, which are opportunistic reproductive tract infections, was attempted with novel ammonium salts of carbamodithioic acid through inhibition of free thiols. In vitro and in vivo efficacies of the designed compounds were evaluated as topical vaginal microbicides. Five compounds showed exceptional activity against drug-resistant and -susceptible strains with negligible toxicity to host (HeLa) cells in vitro in comparison with the standard vaginal microbicide nonoxynol-9 (N-9), without disturbing the normal vaginal flora (i.e. Lactobacillus). The compounds significantly inhibited the cytopathic effects of Trichomonas on HeLa cells in vitro with efficacies comparable with metronidazole (MTZ); however, their efficacy to rescue host cells from co-infection (protozoal and fungal) was greater than that of MTZ. The compounds inhibited ß-haemolysis of red blood cells caused by Trichomonas and were found to be active in vivo in the mouse subcutaneous abscess assay. Some compounds rapidly immobilized human sperm. A mechanism involving inhibition of free thiols and consequently the cysteine proteases of T. vaginalis by the new compounds has been proposed. Thus, a unique scaffold of antimicrobial agents has been discovered that warrants further investigation for development as contraceptive vaginal microbicides.


Asunto(s)
Antiinfecciosos Locales/química , Antiinfecciosos Locales/farmacología , Candida/efectos de los fármacos , Ditiocarba/análogos & derivados , Ditiocarba/farmacología , Staphylococcus aureus/efectos de los fármacos , Trichomonas vaginalis/efectos de los fármacos , Administración Intravaginal , Animales , Antiinfecciosos Locales/administración & dosificación , Antiinfecciosos Locales/efectos adversos , Supervivencia Celular/efectos de los fármacos , Ditiocarba/administración & dosificación , Ditiocarba/efectos adversos , Células Epiteliales/efectos de los fármacos , Femenino , Células HeLa , Humanos , Lactobacillus/efectos de los fármacos , Ratones , Pruebas de Sensibilidad Microbiana
5.
Eur J Nutr ; 54(8): 1255-67, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25408199

RESUMEN

PURPOSE: To investigate apigenin (5,7,4-trihydroxyflavone), a dietary flavonoid with proteasome-inhibitory activity (desired for the management of multiple types of cancers), against FDA-approved anticancer proteasome inhibitor bortezomib in context to its effects on the tumor suppressor estrogen receptor-beta (ER-ß) in prostate cancer cells. METHODS: Prostate cancer (PC-3) cells were treated with either apigenin or bortezomib, and proliferation inhibition was correlated with proteasomal biochemistry, ER-degradation and cell apoptosis. RESULTS: Apigenin specifically inhibited only chymotrypsin-like activity of proteasome without affecting trypsin and caspase-like activities, which was in contrast to the non-specific inhibition of all the three activities by bortezomib. Apigenin selectively increased the protein levels of ER-ß at 1.8 and 10.0 µM (without affecting mRNA levels) and preferentially accumulated ubiquitinated ER-ß over ER-α in PC-3. Apigenin-treated cells exhibited increased ER-ß interactions with ubiquitin-protein ligase E6AP, downregulated PSMA5 (α-5 subunit for assembly of 20S proteasome) without affecting PSMB1 (ß-1 subunit), PSMB2 (ß-2 subunit) and PSMB5 (ß-5 subunit, whose overexpression by bortezomib causes drug resistance) of proteasome at mRNA levels. Caspase-3 activation in PC-3 by apigenin was dependent on caspase-8 activity but independent of mitochondrial membrane depolarization. The deubiquitinase USP14 activity, which antagonizes degradation of proteins via proteasome, was significantly increased by apigenin treatment. CONCLUSIONS: Apigenin selectively inhibits proteasomal degradation of tumor suppressor ER-ß by specifically inhibiting chymotrypsin-like activity of proteasome, preventing its assembly via PSMA5 and inhibiting USP14 enzyme activity in prostate cancer cells, resulting in cancer cell apoptosis. Unlike bortezomib, apigenin's actions are subtle, precise, mechanistically distinct and capable of abstaining drug resistance.


Asunto(s)
Apigenina/farmacología , Apoptosis/efectos de los fármacos , Receptor beta de Estrógeno/metabolismo , Neoplasias de la Próstata/patología , Inhibidores de Proteasoma/farmacología , Ubiquitina/metabolismo , Bortezomib/farmacología , Caspasa 3/genética , Caspasa 3/metabolismo , Caspasa 8/genética , Caspasa 8/metabolismo , Línea Celular Tumoral/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Regulación hacia Abajo , Receptor alfa de Estrógeno/genética , Receptor alfa de Estrógeno/metabolismo , Receptor beta de Estrógeno/genética , Humanos , Masculino , Complejo de la Endopetidasa Proteasomal/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Ubiquitina/genética , Ubiquitina Tiolesterasa/genética , Ubiquitina Tiolesterasa/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
6.
Discoveries (Craiova) ; 2(3): e26, 2014 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-32309554

RESUMEN

Seminal discoveries have established the role of complex tumor microenvironment (TME) in cancer progression; and later on also uncovered that vesiculation is an integral part of intercellular communication among various cell types in coordinating the tumor assembly in a dynamic manner. Exosomes are small membrane bound endosomal vesicles, which are classically known for their role in discarding cellular wastes; however, recent reports underlined their novel role in malignancy by their release from cells into the TME. Since then, the role of exosomes have been a subject of increasing interest, as exosome mediated intercellular communications offer a novel reciprocal relationship between cancer and stromal cells within the TME and modulate the fate and function of the recipient cells to finally shape the tumor progression. Exosomes are characterised by different features including size, content and mode of delivery; and its cargo delivers interesting bioactive components in the form of proteins, miRNAs or other molecules to the target cell. In the pursuit of further study of exosomes, it was found that with the help of its distinct bioactive components, exosomes specifically regulate tumor growth, angiogenesis, metastasis as well as drug resistance properties. In fact, it acts as a bridge between different signaling networks, present inside the spatially distant cells of the heterogeneous tumor population. In the current endeavour, we have highlighted the role of exosomes in modulating the intercellular crosstalk during tumor growth and progression, and proposed certain novel roles of exosomes to address the few enigmatic questions of cancer cell biology.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA