Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Pharm ; 652: 123793, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38195033

RESUMEN

Pharmaceutical cocrystallization has been widely used to improve physicochemical properties of APIs. However, developing cocrystal formulation with proven clinical success remains scarce. Successful translation of a cocrystal to suitable dosage forms requires simultaneously improvement of several deficient physicochemical properties over the parent API, without deteriorating other properties critical for successful product development. In the present work, we report the successful development of a direct compression tablet product of acetazolamide (ACZ), using a 1:1 cocrystal of acetazolamide with p-aminobenzoic acid (ACZ-PABA). The ACZ-PABA tablet exhibits superior biopharmaceutical performance against the commercial tablet, DIAMOX® (250 mg), in healthy human volunteers, leading to more than 50 % reduction in the required dose.


Asunto(s)
Ácido 4-Aminobenzoico , Acetazolamida , Humanos , Acetazolamida/química , Ácido 4-Aminobenzoico/química , Cristalización , Disponibilidad Biológica , Voluntarios Sanos , Solubilidad , Comprimidos/química
2.
ACS Infect Dis ; 10(1): 64-78, 2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38051636

RESUMEN

Antimicrobial resistance (AMR) is one of the most challenging problems and is responsible for millions of deaths every year. We therefore urgently require new chemical entities with novel mechanisms of action. Phytocannabinoids have been adequately reported for the antimicrobial effect but not seriously pursued because of either stringent regulatory issues or poor drug-like properties. In this regard, the current work demonstrated the antibacterial potential of tetrahydrocannabidiol (THCBD, 4), a semisynthetic phytocannabinoid, against Staphylococcus aureus, the second-most widespread bug recognized by the WHO. THCBD (4) was generated from cannabidiol and subjected to extensive antibacterial screening. In in vitro studies, THCBD (4) demonstrated a potent MIC of 0.25 µg/mL against Gram-positive bacteria, S. aureus ATCC-29213. It is interesting to note that THCBD (4) has demonstrated strong effectiveness against efflux pump-overexpressing (SA-1199B, SA-K2191, SA-K2192, and Mupr-1) and multidrug-resistant (MRSA-15187) S. aureus strains. THCBD (4) has also shown a good effect in kill kinetic assays against ATCC-29213 and MRSA-15187. In the checkerboard assay, THCBD (4) has shown additive/indifference effects with several well-known clinically used antibiotics, tetracycline, mupirocin, penicillin G, and ciprofloxacin. THCBD (4) also exhibited good permeability in the artificial skin model. Most importantly, THCBD (4) has significantly reduced CFU in mice's in vivo skin infection models and also demonstrated decent plasma exposure with 16-17% oral bioavailability. Acute dermal toxicity of THCBD (4) suggests no marked treatment-related impact on gross pathophysiology. This attractive in vitro and in vivo profile of plant-based compounds opens a new direction for new-generation antibiotics and warrants further detailed investigation.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Infecciones Estafilocócicas , Animales , Ratones , Antibacterianos/farmacología , Antibacterianos/química , Staphylococcus aureus , Pruebas de Sensibilidad Microbiana , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/microbiología
3.
Int J Pharm ; 650: 123666, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38065346

RESUMEN

Emerging evidence suggests that intestinal permeability can be potentially enhanced through cocrystallization. However, a mechanism for this effect remains to be established. In this study, we first demonstrate the enhancement in intestinal permeability, evaluated by the Caco-2 cell permeability assay, of acetazolamide (ACZ) in the presence of a conformer, p-aminobenzoic acid (PABA), delivered in the form of a 1:1 cocrystal. The binding strength of ACZ and PABA with the Pgp efflux transporter, either alone or as a mixture, was calculated using molecular dynamics simulation. Results show that PABA weakens the binding of ACZ with Pgp, which leads to a lower efflux ratio and elevated permeability of ACZ. This work provides molecular-level insights into a potentially effective strategy to improve the intestinal permeability of drugs. If the same cocrystal also exhibits higher solubility, oral bioavailability of BCS IV drugs can likely be improved by forming a cocrystal with a Pgp inhibitor.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP , Simulación de Dinámica Molecular , Humanos , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Células CACO-2 , Ácido 4-Aminobenzoico , Permeabilidad , Absorción Intestinal
4.
Mol Pharm ; 20(10): 5226-5239, 2023 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-37677085

RESUMEN

Multidrug salts represent more than one drug in a crystal lattice and thus could be used to deliver multiple drugs in a single dose. It showcases unique physicochemical properties in comparison to individual components, which could lead to improved efficacy and therapeutic synergism. This study presents the preparation and scale-up of sulfamethoxazole-piperazine salt, which has been thoroughly characterized by X-ray diffraction and thermal and spectroscopic analyses. A detailed mechanistic study investigates the impact of piperazine on the microenvironmental pH of the salt and its effect on the speciation profile, solubility, dissolution, and diffusion profile. Also, the improvement in the physicochemical properties of sulfamethoxazole due to the formation of salt was explored with lattice energy contributions. A greater ionization of sulfamethoxazole (due to pH changes contributed by piperazine) and lesser lattice energy of sulfamethoxazole-piperazine contributed to improved solubility, dissolution, and permeability. Moreover, the prepared salt addresses the stability issues of piperazine and exhibits good stability behavior under accelerated stability conditions. Due to the improvement of physicochemical properties, the sulfamethoxazole-piperazine salt demonstrates better pharmacokinetic parameters in comparison to sulfamethoxazole and provides a strong suggestion for the reduction of dose. The following study suggests that multidrug salts can concurrently enhance the physicochemical properties of drugs and present themselves as improved fixed-dose combinations.


Asunto(s)
Sales (Química) , Piperazina , Sales (Química)/química , Difracción de Rayos X , Solubilidad
5.
ACS Omega ; 8(37): 34120-34133, 2023 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-37744830

RESUMEN

Allopurinol (ALO) is a medication that treats gout and kidney stones by lowering uric acid synthesis in the blood. The biopharmaceutics classification system (BCS) IV drug exhibits poor aqueous solubility, permeability, and bioavailability. To overcome the bottlenecks of ALO, salts with maleic acid (MLE) and oxalic acid (OXA) were synthesized using the solvent-assisted grinding method. The novel multicomponent solids were characterized by PXRD, DSC, TGA, FT-IR, and SEM images. The crystal structures of these salts with variable stoichiometry were obtained using Rietveld refinement from the high-resolution PXRD data. The proton from the dicarboxylic acid is transferred to the most basic pyrimidine "N" of ALO. The N-H···N hydrogen-bonded ALO homodimer is replaced by the N+-H···O- ionic interactions in ALO-OXA (2:1:0.4) and ALO-MLE (1:1:1) salt hydrates. The organic salts improved solubility and dissolution up to 5-fold and the diffusion permeability up to 12 times compared to the native drug in a luminal pH 6.8 phosphate buffer medium. The salt hydrates were exceptionally stable during storage at 30 ± 5 °C and 75 ± 5% relative humidity. Superior dissolution and diffusion permeability of the ALO-MLE salt resulted in improved pharmacokinetics (peak plasma concentration) that offers a promising solid dosage form with enhanced bioavailability and lower dosage formulation.

6.
Pharm Dev Technol ; 27(10): 989-998, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36322702

RESUMEN

Eutectics are multicomponent systems which are an alternative to the conventional techniques for modulating the biopharmaceutical properties of a pharmaceutical. Ezetimibe (ETZ) is a hypocholesterolemic agent with limited dissolution, poor water solubility, and subsequently demonstrates low oral bioavailability. Additionally, ETZ exhibits poor mechanical properties, leading to difficulties in developing dosage forms through direct compression. The present work highlights the applicability of eutectics in the simultaneous improvement of physicochemical along with mechanical properties of ETZ. A pharmaceutical eutectic of ETZ with succinimide (SUC) was prepared by mechanochemical grinding and thoroughly characterized using thermoanalytical, X-ray diffraction, and spectroscopic methods. Intrinsic dissolution rate and pharmacokinetic analysis were also performed for ezetimibe-succinimide (ETZ-SUC) eutectic in contrast to pure ETZ. The eutectic demonstrated ∼2-fold increase in the solubility and dissolution rate. In pharmacokinetic studies, the area under the curve (AUC) for ETZ-SUC eutectic (28.03 ± 2.22 ng*h/mL) was found to be higher than ETZ (8.98 ± 0.36 ng*h/mL), indicating improved oral bioavailability for eutectics. Also, it was observed that enhanced material functionality aids in designing directly compressed tablets, where the eutectic formulation showed an improved dissolution profile over the ETZ formulation. The study demonstrates that eutectic conglomerates could be utilized to develop ideal oral solid dosage formulations.


Asunto(s)
Productos Biológicos , Ezetimiba/química , Solubilidad , Difracción de Rayos X , Preparaciones Farmacéuticas , Disponibilidad Biológica
7.
Mol Pharm ; 19(5): 1557-1572, 2022 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-35290064

RESUMEN

Pirfenidone (PFD) is the first pharmacological agent approved by the US Food and Drug Administration (FDA) in 2014 for the treatment of idiopathic pulmonary fibrosis (IPF). The recommended daily dosage of PFD in patients with IPF is very high (2403 mg/day) and must be mitigated through additives. In the present work, sustained-release (SR) formulations of the PFD-FA cocrystal of two different strengths such as 200 and 600 mg were prepared and its comparative bioavailability in healthy human volunteers was studied against the reference formulation PIRFENEX (200 mg). A single-dose pharmacokinetic study (200 mg IR vs 200 mg SR) demonstrated that the test formulation exhibited lower Cmax and Tmax in comparison to the reference formulation, which showed that the cocrystal behaved like an SR formulation. Further in the multiple-dose comparative bioavailability study (200 mg IR thrice daily vs 600 mg SR once daily), the test formulation was found bioequivalent to the reference formulation. In conclusion, the present study suggests that cocrystallization offers a promising strategy to reduce the solubility of PFD and opens the door for potential new dosage forms of this important pharmaceutical.


Asunto(s)
Disponibilidad Biológica , Administración Oral , Área Bajo la Curva , Estudios Cruzados , Preparaciones de Acción Retardada , Fumaratos , Voluntarios Sanos , Humanos , Piridonas , Solubilidad , Comprimidos , Equivalencia Terapéutica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...