Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
bioRxiv ; 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38895333

RESUMEN

The synthesis and degradation rates of proteins form an essential component of gene expression control. Heavy water labeling has been used in conjunction with mass spectrometry to measure protein turnover rates, but the optimal analytical approaches to derive turnover rates from the isotopomer patterns of deuterium labeled peptides continue to be a subject of research. Here we describe a method, which comprises a reverse lookup of numerically approximated peptide isotope envelopes, coupled to the selection of optimal isotopomer pairs based on peptide sequence, to calculate the molar fraction of new peptide synthesis in heavy water labeling mass spectrometry experiments. We validated this approach using an experimental calibration curve comprising mixtures of fully unlabeled and fully labeled proteomes. We then re-analyzed 17 proteome-wide turnover experiments from four mouse organs, and showed that the method increases the coverage of well-fitted peptides in protein turnover experiments by 25-82%. The method is implemented in the Riana software tool for protein turnover analysis, and may avail ongoing efforts to study the synthesis and degradation kinetics of proteins in animals on a proteome-wide scale. What's new: We describe a reverse lookup method to calculate the molar fraction of new synthesis from numerically approximated peptide isotopomer profiles in heavy water labeling mass spectrometry experiments. Using an experimental calibration curve comprising mixtures of fully unlabeled and fully labeled proteomes at various proportions, we show that this method provides a straightforward way to calculate the proportion of new proteins in a protein pool from arbitrarily chosen isotopomer ratios. We next analyzed which of the isotopomer pairs within the peptide isotope envelope yielded isotopomer time courses that fit most closely to kinetic models, and found that the identity of the isotopomer pair depends partially on the number of deuterium accessible labeling sites of the peptide. We next derived a strategy to automatically select the isotopomer pairs to calculate turnover rates based on peptide sequence, and showed that this increases the coverage of existing proteome-wide turnover experiments in multiple data sets of the mouse heart, liver, kidney, and skeletal muscle by up to 25-82%.

2.
bioRxiv ; 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38645170

RESUMEN

The fetal genetic program orchestrates cardiac development and the re-expression of fetal genes is thought to underlie cardiac disease and adaptation. Here, a proteomics ratio test using mass spectrometry is applied to find protein isoforms with statistically significant usage differences in the fetal vs. postnatal mouse heart. Changes in isoform usage ratios are pervasive at the protein level, with 104 significant events observed, including 88 paralog-derived isoform switching events and 16 splicing-derived isoform switching events between fetal and postnatal hearts. The ratiometric proteomic comparisons rediscovered hallmark fetal gene signatures including a postnatal switch from fetal ß (MYH7) toward ɑ (MYH6) myosin heavy chains and from slow skeletal muscle (TNNI1) toward cardiac (TNNI3) troponin I. Altered usages in metabolic proteins are prominent, including a platelet to muscle phosphofructokinase (PFKP - PFKM), enolase 1 to 3 (ENO1 - ENO3), and alternative splicing of pyruvate kinase M2 toward M1 (PKM2 - PKM1) isoforms in glycolysis. The data also revealed a parallel change in mitochondrial proteins in cardiac development, suggesting the shift toward aerobic respiration involves also a remodeling of the mitochondrial protein isoform proportion. Finally, a number of glycolytic protein isoforms revert toward their fetal forms in adult hearts under pathological cardiac hypertrophy, suggesting their functional roles in adaptive or maladaptive response, but this reversal is partial. In summary, this work presents a catalog of ratiometric protein markers of the fetal genetic program of the mouse heart, including previously unreported splice isoform markers.

3.
J Proteome Res ; 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38456420

RESUMEN

A computational analysis of mass spectrometry data was performed to uncover alternative splicing derived protein variants across chambers of the human heart. Evidence for 216 non-canonical isoforms was apparent in the atrium and the ventricle, including 52 isoforms not documented on SwissProt and recovered using an RNA sequencing derived database. Among non-canonical isoforms, 29 show signs of regulation based on statistically significant preferences in tissue usage, including a ventricular enriched protein isoform of tensin-1 (TNS1) and an atrium-enriched PDZ and LIM Domain 3 (PDLIM3) isoform 2 (PDLIM3-2/ALP-H). Examined variant regions that differ between alternative and canonical isoforms are highly enriched with intrinsically disordered regions. Moreover, over two-thirds of such regions are predicted to function in protein binding and RNA binding. The analysis here lends further credence to the notion that alternative splicing diversifies the proteome by rewiring intrinsically disordered regions, which are increasingly recognized to play important roles in the generation of biological function from protein sequences.

4.
bioRxiv ; 2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-37873130

RESUMEN

A computational analysis of mass spectrometry data was performed to uncover alternative splicing derived protein variants across chambers of the human heart. Evidence for 216 non-canonical isoforms was apparent in the atrium and the ventricle, including 52 isoforms not documented on SwissProt and recovered using an RNA sequencing derived database. Among non-canonical isoforms, 29 show signs of regulation based on statistically significant preferences in tissue usage, including a ventricular enriched protein isoform of tensin-1 (TNS1) and an atrium-enriched PDZ and LIM Domain 3 (PDLIM3) isoform 2 (PDLIM3-2/ALP-H). Examined variant regions that differ between alternative and canonical isoforms are highly enriched in intrinsically disordered regions, and over two-thirds of such regions are predicted to function in protein binding and/or RNA binding. The analysis here lends further credence to the notion that alternative splicing diversifies the proteome by rewiring intrinsically disordered regions, which are increasingly recognized to play important roles in the generation of biological function from protein sequences.

5.
J Am Soc Mass Spectrom ; 34(9): 1962-1969, 2023 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-37526995

RESUMEN

Proteomic studies typically involve the use of different types of software for annotating experimental tandem mass spectrometric data (MS/MS) and thereby simplifying the process of peptide and protein identification. For such annotations, these softwares calculate the m/z values of the peptide/protein precursor and fragment ions, for which a database of protein sequences must be provided as an input file. The calculated m/z values are stored as another database, which the user usually cannot view. Database Creator for Mass Analysis of Peptides and Proteins (DC-MAPP) is a novel standalone software that can create custom databases for "viewing" the calculated m/z values of precursor and fragment ions, prior to the database search. It contains three modules. Peptide/Protein sequences as per user's choice can be entered as input to the first module for creating a custom database. In the second module, m/z values must be queried-in, which are searched within the custom database to identify protein/peptide sequences. The third module is suited for peptide mass fingerprinting, which can be used to analyze both ESI and MALDI mass spectral data. The feature of "viewing" the custom database can be helpful not only for better understanding the search engine processes, but also for designing multiple reaction monitoring (MRM) methods. Post-translational modifications and protein isoforms can also be analyzed. Since, DC-MAPP relies on the protein/peptide "sequences" for creating custom databases, it may not be applicable for the searches involving spectral libraries. Python language was used for implementation, and the graphical user interface was built with Page/Tcl, making this tool more user-friendly. It is freely available at https://vit.ac.in/DC-MAPP/.


Asunto(s)
Proteómica , Espectrometría de Masas en Tándem , Espectrometría de Masas en Tándem/métodos , Proteómica/métodos , Péptidos/química , Secuencia de Aminoácidos , Programas Informáticos , Proteínas , Iones , Bases de Datos de Proteínas
6.
MicroPubl Biol ; 20232023.
Artículo en Inglés | MEDLINE | ID: mdl-37456137

RESUMEN

AC16 cells are a transformed human cardiac cell line commonly used to study cardiomyocyte biology. We show that reduced proliferation and senescence markers can be robustly induced in AC16 cells cultured in low serum condition and treated with (i) low-dose doxorubicin, (ii) UV 254 nm, or (iii) H 2 O 2 exposure for up to 48 hours. Increased p21 (CDKN1A) and H2A.X variant histone (H2AX) levels serve as reliable molecular markers upon all three treatment conditions, but the up-regulation of another common senescence marker, p16 (CDKN2A) was not observed. A proteomics screen further shows that the loss of histones and the increased expression of thymidine kinases (TK1) are prominent features of AC16 cells under doxorubicin induced senescence.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...