Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Air Waste Manag Assoc ; 68(6): 616-625, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29341855

RESUMEN

Use of vent-free gas heating appliances for supplemental heating in U.S. homes is increasing. However, there is currently a lack of information on the potential impact of these appliances on indoor air quality for homes constructed according to energy-efficient and green building standards. A probabilistic analysis was conducted to estimate the impact of vent-free gas heating appliances on indoor air concentrations of carbon monoxide (CO), nitrogen dioxide (NO2), carbon dioxide (CO2), water vapor, and oxygen in "tight" energy-efficient homes in the United States. A total of 20,000 simulations were conducted for each Department of Energy (DOE) heating region to capture a wide range of home sizes, appliance features, and conditions, by varying a number of parameters, e.g., room volume, house volume, outdoor humidity, air exchange rates, appliance input rates (Btu/hr), and house heat loss factors. Predicted airborne levels of CO were below the U.S. Environmental Protection Agency (EPA) standard of 9 ppm for all modeled cases. The airborne concentrations of NO2 were below the U.S. Consumer Product Safety Commission (CPSC) guideline of 0.3 ppm and the Health Canada benchmark of 0.25 ppm in all cases and were below the World Health Organization (WHO) standard of 0.11 ppm in 99-100% of all cases. Predicted levels of CO2 were below the Health Canada standard of 3500 ppm for all simulated cases. Oxygen levels in the room of vent-free heating appliance use were not significantly reduced. The great majority of cases in all DOE regions were associated with relative humidity (RH) levels from all indoor water vapor sources that were less than the EPA-recommended 70% RH maximum to avoid active mold and mildew growth. The conclusion of this investigation is that when installed in accordance with the manufacturer's instructions, vent-free gas heating appliances maintain acceptable indoor air quality in tight energy-efficient homes, as defined by the standards referenced in this report. IMPLICATIONS: Probabilistic modeling of indoor air concentrations of carbon monoxide (CO), nitrogen dioxide (NO2), carbon dioxide (CO2), water vapor, and oxygen associated with use of vent-free gas heating appliances provides new data indicating that uses of these devices are consistent with acceptable indoor air quality in "tight" energy-efficient homes in the United States. This study will provide authoritative bodies such as the International Code Council with definitive information that will assist in the development of future versions of national building codes, and will provide evaluation of the performance of unvented gas heating products in energy conservation homes.


Asunto(s)
Contaminantes Atmosféricos/análisis , Contaminación del Aire Interior/análisis , Gasolina , Calefacción , Modelos Estadísticos , Dióxido de Carbono/análisis , Monóxido de Carbono/análisis , Vivienda , Dióxido de Nitrógeno/análisis , Oxígeno/análisis , Vapor , Estados Unidos
2.
J Toxicol Environ Health A ; 76(9): 540-55, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23751000

RESUMEN

Surface deposition of insecticides applied as indoor residential foggers, baseboard or perimeter sprays, spot sprays, and crack-and-crevice (C&C) sprays represent pathways of unintentional, postapplication exposure for children and adults. Estimation of the magnitude of this exposure following an application event is associated with uncertainty due to many factors, including (1) surface residue deposition and distribution, (2) access to and the nature of contact with treated surfaces based on time-activity patterns of residents, and (3) the role of residue removal mechanisms such as cleaning treated surfaces, pesticide degradation or redistribution, and hand washing and bathing following contact. A comparative spatial deposition study was conducted involving broadcast, perimeter, and C&C application methods. Residues measured using a spatial grid of deposition dosimeters on floor surfaces demonstrated significantly lower residue concentrations in readily accessible areas following C&C and perimeter applications, versus broadcast treatment. Analyses of other monitoring studies support this finding. The implications of these findings are discussed for both screening-level and higher tier probabilistic postapplication, residential exposure assessment. The U.S. Environmental Protection Agency (EPA) current guidance on interpretation of deposition following C&C application is supported by data in this study and others that indicate a ratio of 10:1 for deposition for broadcast versus C&C application. However, the perimeter deposition data are quite similar to C&C deposition and do not support a 70/30 default relative to broadcast recommended by the U.S. EPA (2012).


Asunto(s)
Contaminación del Aire Interior/análisis , Exposición a Riesgos Ambientales/análisis , Monitoreo del Ambiente/métodos , Insecticidas/análisis , Residuos de Plaguicidas/análisis , Adulto , Niño , Cromatografía Líquida de Alta Presión , Femenino , Humanos , Insecticidas/toxicidad , Masculino , Residuos de Plaguicidas/toxicidad , Espectrometría de Masas en Tándem
3.
Sci Total Environ ; 458-460: 555-67, 2013 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-23707726

RESUMEN

While only limited data are available to characterize the potential toxicity of over 8 million commercially available chemical substances, there is even less information available on the exposure and use-scenarios that are required to link potential toxicity to human and ecological health outcomes. Recent improvements and advances such as high throughput data gathering, high performance computational capabilities, and predictive chemical inherency methodology make this an opportune time to develop an exposure-based prioritization approach that can systematically utilize and link the asymmetrical bodies of knowledge for hazard and exposure. In response to the US EPA's need to develop novel approaches and tools for rapidly prioritizing chemicals, a "Challenge" was issued to several exposure model developers to aid the understanding of current systems in a broader sense and to assist the US EPA's effort to develop an approach comparable to other international efforts. A common set of chemicals were prioritized under each current approach. The results are presented herein along with a comparative analysis of the rankings of the chemicals based on metrics of exposure potential or actual exposure estimates. The analysis illustrates the similarities and differences across the domains of information incorporated in each modeling approach. The overall findings indicate a need to reconcile exposures from diffuse, indirect sources (far-field) with exposures from directly, applied chemicals in consumer products or resulting from the presence of a chemical in a microenvironment like a home or vehicle. Additionally, the exposure scenario, including the mode of entry into the environment (i.e. through air, water or sediment) appears to be an important determinant of the level of agreement between modeling approaches.


Asunto(s)
Bases de Datos de Compuestos Químicos , Exposición a Riesgos Ambientales/estadística & datos numéricos , Sustancias Peligrosas/clasificación , Sustancias Peligrosas/toxicidad , Modelos Teóricos , Estados Unidos , United States Environmental Protection Agency
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...