Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 17(7)2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38611966

RESUMEN

This article describes an affordable method for the synthesis of MnMoO4 nanoflowers through the microwave synthesis approach. By manipulating the reaction parameters like solvent, pH, microwave power, and irradiation duration along this pathway, various nanostructures can be acquired. The synthesized nanoflowers were analyzed by using a powder X-ray diffractometer (XRD), field emission scanning electron microscopy (FE-SEM) with energy dispersive X-ray spectroscopy (EDS), Fourier transform infrared spectroscopy (FT-IR), and UV-vis diffuse reflectance spectroscopy (UV-DRS) to determine their crystalline nature, morphological and functional group, and optical properties, respectively. X-ray photoelectron spectroscopy (XPS) was performed for the examination of elemental composition and chemical states by qualitative and quantitative analysis. The results of the investigations demonstrated that the MnMoO4 nanostructures with good crystallinity and distinct shape were formed successfully. The synthesized MnMoO4 nanoflowers were tested for their efficiency as a photocatalyst in the degradation studies of methylene blue (MB) as model organic contaminants in an aqueous medium under visible light, which showed their photocatalytic activity with a degradation of 85%. Through the band position calculations using the electronegative value of MnMoO4, the photocatalytic mechanism of the nanostructures was proposed. The results indicated that the effective charge separation, and transfer mechanisms, in addition to the flower-like shape, were responsible for the photocatalytic performance. The stability of the recovered photocatalyst was examined through its recyclability in the degradation of MB. Leveraging MnMoO4's photocatalytic properties, future studies may focus on scaling up these processes for practical and large-scale environmental remediation.

2.
Environ Geochem Health ; 46(3): 108, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38453774

RESUMEN

Accumulation of polycyclic aromatic hydrocarbons (PAH) poses significant dangers to the environment and human health. The advancement of technology for cleaning up PAH-contaminated environments is receiving more attention. Adsorption is the preferred and most favorable approach for cleaning up sediments polluted with PAH. Due to their affordability and environmental friendliness, carbonaceous adsorbents (CAs) have been regarded as promising for adsorbing PAH. However, adsorbent qualities, environmental features, and factors may all significantly impact how well CAs remove PAH. According to growing data, CAs, most of which come from laboratory tests, may be utilized to decontaminate PAH in aquatic setups. However, their full potential has not yet been established, especially concerning field applications. This review aims to concisely summarize recent developments in CA, PAH stabilization processes, and essential field application-controlling variables. This review analysis emphasizes activated carbon, biochar, Graphene, carbon nanotubes, and carbon-nanomaterials composite since these CAs are most often utilized as adsorbents for PAH in aquatic systems.


Asunto(s)
Nanoestructuras , Nanotubos de Carbono , Hidrocarburos Policíclicos Aromáticos , Humanos , Adsorción
3.
Environ Res ; 250: 118513, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38368918

RESUMEN

Carbon dots (CDs) are an emerging type of carbon nanomaterial with strong biocompatibility, distinct chemical and physical properties, and low toxicity. CDs may emit fluorescence in the ultraviolet (UV) to near-infrared (NIR) range, which renders them beneficial for biomedical applications. CDs are usually made from carbon precursors and can be synthesized using top-down and bottom-up methods and it can be easily functionalized using different methods. For specific cases of biomedical applications carbon dot functionalization augments the materials' characteristics. Novel functionalization techniques are still being investigated. This review will look at the benefits of functionalization to attain a high yield and various biological applications. Biomedical applications such as photodynamic and photothermal therapy, biosensing, bioimaging, and antiviral and antibacterial properties will be covered in this review. The future applications of green synthesized carbon dots will be determined in part by this review.


Asunto(s)
Carbono , Carbono/química , Desarrollo Sostenible , Puntos Cuánticos/química , Tecnología Química Verde/métodos
4.
Environ Res ; 250: 118503, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38367840

RESUMEN

Existing fossil-based commercial products present a significant threat to the depletion of global natural resources and the conservation of the natural environment. Also, the ongoing generation of waste is giving rise to challenges in waste management. Conventional practices for the management of waste, for instance, incineration and landfilling, emit gases that contribute to global warming. Additionally, the need for energy is escalating rapidly due to the growing populace and industrialization. To address this escalating desire in a sustainable manner, access to clean and renewable sources of energy is imperative for long-term development of mankind. These interrelated challenges can be effectively tackled through the scientific application of biowaste-to-bioenergy technologies. The current article states an overview of the strategies and current status of these technologies, including anaerobic digestion, transesterification, photobiological hydrogen production, and alcoholic fermentation which are utilized to convert diverse biowastes such as agricultural and forest residues, animal waste, and municipal waste into bioenergy forms like bioelectricity, biodiesel, bio alcohol, and biogas. The successful implementation of these technologies requires the collaborative efforts of government, stakeholders, researchers, and scientists to enhance their practicability and widespread adoption.


Asunto(s)
Biocombustibles , Administración de Residuos/métodos , Conservación de los Recursos Naturales/métodos , Desarrollo Sostenible
5.
ACS Omega ; 9(7): 8448-8456, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38405472

RESUMEN

This work explores the use of MXene-embedded porous carbon-based Cu2O nanocomposite (Cu2O/M/AC) as a sensing material for the electrochemical sensing of glucose. The composite was prepared using the coprecipitation method and further analyzed for its morphological and structural characteristics. The highly porous scaffold of activated (porous) carbon facilitated the incorporation of MXene and copper oxide inside the pores and also acted as a medium for charge transfer. In the Cu2O/M/AC composite, MXene and Cu2O influence the sensing parameters, which were confirmed using electrochemical techniques such as cyclic voltammetry, electrochemical impedance spectroscopy, and amperometric analysis. The prepared composite shows two sets of linear ranges for glucose with a limit of detection (LOD) of 1.96 µM. The linear range was found to be 0.004 to 13.3 mM and 15.3 to 28.4 mM, with sensitivity values of 430.3 and 240.5 µA mM-1 cm-2, respectively. These materials suggest that the prepared Cu2O/M/AC nanocomposite can be utilized as a sensing material for non-enzymatic glucose sensors.

6.
J Biomol Struct Dyn ; : 1-15, 2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38334124

RESUMEN

Diabetes mellitus (DM) is a multifactorial life-threatening endocrine disease characterized by abnormalities in glucose metabolism. It is a chronic metabolic disease that involves multiple enzymes such as α-amylase and α-glucosidases. Inhibition of these enzymes has been identified as a promising method for managing diabetes, and researchers are currently focusing on discovering novel α-amylase and α-glucosidase inhibitors for diabetes therapy. Hence, we have selected 12 bioactive compounds from the Momordica charantia (MC) plant and performed a virtual screening and molecular dynamics investigation to identify natural inhibitors of α-amylase and α-glucosidases. Our in silico result revealed that phytocompound Rutin showed the highest binding affinity against α-amylase (1HNY) enzymes at (-11.68 kcal/mol), followed by Karaviloside II (-9.39), Momordicoside F (-9.19), Campesterol (-9.11. While docking against α-glucosidases (4J5T), Rutin again showed the greatest binding affinity (-11.93 kcal/mol), followed by Momordicine (-9.89), and Campesterol (-8.99). Molecular dynamics (MD) simulation research is currently the gold standard for drug design and discovery. Consequently, we conducted simulations of 100 nanoseconds (ns) to assess the stability of protein-ligand complexes based on parameters like RMSD, RMSF, RG, PCA, and FEL. The significance of our findings indicates that rutin from MC might serve as an effective natural therapeutic agent for diabetes management due to its strongest binding affinities with α-amylase and α-glucosidase enzymes. Further research in animals and humans is essential to validate the efficacy of these drug molecules.Communicated by Ramaswamy H. Sarma.

7.
Phys Chem Chem Phys ; 26(5): 4262-4277, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38230683

RESUMEN

The optimised designs of dimethyl ammonium cobalt formate-based perovskite crystals [(CH3)2NH2]Co(HCOO)3 were experimentally synthesized and computationally utilized as absorbers for perovskite solar cells (PSCs). Crystals were grown using solvothermal synthesis. Additive materials (Fe, Ni) are responsible for the growth and suppression of crystals in the micrometre range. Temperature and pressure were altered to obtain optimum growth conditions. Grown crystals were characterized by spectroscopy (XRD, FT-IR, UV-Vis) and optical microscopy. Combined density functional theory (DFT) and drift-diffusion modelling frameworks were simulated. These simulators were used to examine various perovskite absorbers for solar-cell configurations. Field calculations were used to examine the structural stability, band structure, and electronic contribution of the constituent elements in [(CH3)2NH2]Co1-nMn(HCOO)3 (M = Fe, Ni and n = 0, 0.1) as absorber material. Conventional TiO2 and spiro-OMeTAD were used as the electron-transport layer and hole-transport layer, respectively, and Pt was used as a back contact. Comprehensive analysis of the effects of several parameters (layer thickness, series and shunt resistances, temperature, generation-recombination rates, current-voltage density, quantum efficiency) was carried out using simulation. Our proposed strategy may pave the way for further design of new absorber materials for PSCs.

8.
ACS Omega ; 9(1): 828-836, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38222534

RESUMEN

The impact of electron beam radiation on the blend of linear low-density polyethylene (LLDPE) and polydimethylsiloxane (PDMS) rubber at different doses from 50 to 300 kGy has been investigated. The irradiated sheets were examined for their morphology, gel content, thermal stability, melt behavior, and electrical and dielectric properties. The radiation treatment has reduced both the melting point and crystallinity of base polymers and their blends because of chain scission. As observed, 100 kGy doses of irradiated blend and 3 wt % of loaded nanosilica composite showed comparatively good thermal stability. The phase morphology of the LLDPE: PDMS rubber blend showed a honeycomb-like design before irradiation because of two-stage morphology, which prominently changed into a solitary stage after electron beam irradiation. This is because of intermolecular cross-link arrangement inside the singular parts, just like cross-linking development at the interface. From the AQFESEM study, it is observed that the stacking of nanosilica particles within the blend matrix is greatly reduced after electron beam irradiation. The addition of nanosilica within the blend increased the electrical conductivity and dielectric permittivity. The dielectric breakdown strength has been observed to be the highest for 3 wt % loaded nanocomposite and its irradiated sample. The result indicates that the nanocomposite can be utilized for high-voltage cable applications in indoor and outdoor fields.

9.
ACS Appl Bio Mater ; 7(2): 752-777, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38271214

RESUMEN

Recent developments in nanoscale materials have found extensive use in various fields, especially in the biomedical industry. Several substantial obstacles must be overcome, particularly those related to nanostructured materials in biomedicine, before they can be used in therapeutic applications. Significant concerns in biomedicine include biological processes, adaptability, toxic effects, and nano-biointerfacial properties. Biomedical researchers have difficulty choosing suitable materials for drug carriers, cancer treatment, and antiviral uses. Carbon nanomaterials are among the various nanoparticle forms that are continually receiving interest for biomedical applications. They are suitable materials owing to their distinctive physical and chemical properties, such as electrical, high-temperature, mechanical, and optical diversification. An individualized, controlled, dependable, low-carcinogenic, target-specific drug delivery system can diagnose and treat infections in biomedical applications. The variety of carbon materials at the nanoscale is remarkable. Allotropes and other forms of the same element, carbon, are represented in nanoscale dimensions. These show promise for a wide range of applications. Carbon nanostructured materials with exceptional mechanical, electrical, and thermal properties include graphene and carbon nanotubes. They can potentially revolutionize industries, including electronics, energy, and medicine. Ongoing investigation and expansion efforts continue to unlock possibilities for these materials, making them a key player in shaping the future of advanced technology. Carbon nanostructured materials explore the potential positive effects of reducing the greenhouse effect. The current state of nanostructured materials in the biomedical sector is covered in this review, along with their synthesis techniques and potential uses.


Asunto(s)
Nanopartículas , Nanoestructuras , Nanotubos de Carbono , Nanotubos de Carbono/química , Nanoestructuras/uso terapéutico , Nanoestructuras/química , Sistemas de Liberación de Medicamentos/métodos , Portadores de Fármacos
10.
Chemosphere ; 346: 140410, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37898467

RESUMEN

Enhancing the solar-physical conversion efficacy ability of the nanomaterials is an essential for real-time implementation. We report the enhanced solar-physical efficiency of the BiFeO3 nanospheres via Gd3+ doping and Au nanoparticles decoration. Initially, we have obtained the Bi1-xGdxFeO3 nanospheres were attained via a simple solvothermal technique and then citrate reduction of Au was conducted. Obtained perovskite BiFeO systems were studied for the Gd3+ doping, crystalline phase and elemental purity using the XRD and XPS techniques. Transmission electron microscope had revealed the ∼400 nm sized BiFeO3 nanospheres. Optical absorption spectrum revealed the enhanced visible photon absorption occurring in BiFeO3 for both Gd3+ doping and Au decoration. The bandgap values of pristine, 1%, 3% and 5% Gd3+ doped in BiFeO3 are 2.2 eV, 2.19 eV, 2.17 eV and 2.12 eV, respectively. Conducted photoluminescence revealed the dual electron trapping occurring in BiFeO3 via Gd3+ ions and Au nanoparticles. LED light assisted 72% of piezo-photocatalytic degradation efficiency of Tetracycline is achieved with Bi0 95Fe0 05O3/Au, whereas the photo catalytic is only 65% and piezo catalytic efficiency is 58%. In recyclable studies the Bi0.95Gd0.05FeO3/Au had shown the consistent piezo-photocatalytic efficiency for 3 reaction cycles. Further, fabricated DSSC studies revealed that near 30 % enhanced solar photovoltaic efficiency for Bi0 95Fe0 05O3/Au (η = 6.5%) solar cells on par to the pristine BiFeO3 (η = 5.02%).


Asunto(s)
Nanopartículas del Metal , Nanosferas , Oro , Compuestos de Calcio
11.
Chemosphere ; 350: 141015, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38154676

RESUMEN

Piezo-photocatalysis of ZnO nanostructures had recently well attracted due to their exceptional potential in degrading the antibiotics and scalable hydrogen production. Here, we have synthesized the Ce3+ doped ZnO nanospheres in a facile wet chemical strategy. Dopant ions induced morphological evolution and optical bandgap tuning had observed in our experiment. Optical absorbance spectrum had confirmed the bandgap shortening occurs with Ce3+ doped ZnO specimens. The bandgap gap value had reduced to 2.82 eV from 3.05eV confirming the visible light responsivity of ZnO nano specimens. Obtained Zn(1-x)CexO nanospheres were utilized to fabricate the p-Si/n- Zn(1-x)CexO heterojunction diodes as well studied the improved electrical conductivity for the Ce3+ specimen-based diodes. Besides, ideality factor and barrier height values of the heterojunction diodes ZnO/p-Si, Zn0.99Ce0.01O/p-Si, Zn0.97Ce0.03O/p-Si, and Zn0.95Ce0.05O/p-Si are 15.97 & 0.43 eV, 15.47 & 0.44 eV, 8.02 & 0.46 eV and 5.21 & 0.47 eV, respectively. Direct sunlight assisted piezo-photocatalytic tetracycline (TC) degradation efficiency of ZnO, Zn0.99Ce0.01O, Zn0.97Ce0.03O, and Zn0.95Ce0.05O nanostructures respectively are 64%, 69%, 74% and 82%. We have produced the hydrogen quantity of 1234 µ mol h-1, 1490 µ mol h-1, 1750 µ mol h-1 and 1980 µ mol h-1 with 0%, 1%, 3% and 5% Ce3+ doped ZnO specimens under the direct sunlight assisted piezo-photocatalytic H2 production from H2S splitting.


Asunto(s)
Nanoestructuras , Óxido de Zinc , Óxido de Zinc/química , Nanoestructuras/química , Luz , Luz Solar
12.
Plant Physiol Biochem ; 206: 108261, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38096734

RESUMEN

The rapid advancement of nanotechnology has led to unprecedented innovations; however, it is crucial to analyze its environmental impacts carefully. This review thoroughly examines the complex relationship between plants and nanomaterials, highlighting their significant impact on ecological sustainability and ecosystem well-being. This study investigated the response of plants to nano-pollution stress, revealing the complex regulation of defense-related genes and proteins, and highlighting the sophisticated defense mechanisms in nature. Phytohormones play a crucial role in the complex molecular communication network that regulates plant responses to exposure to nanomaterials. The interaction between plants and nano-pollution influences plants' complex defense strategies. This reveals the interconnectedness of systems of nature. Nevertheless, these findings have implications beyond the plant domain. The incorporation of hyperaccumulator plants into pollution mitigation strategies has the potential to create more environmentally sustainable urban landscapes and improve overall environmental resilience. By utilizing these exceptional plants, we can create a future in which cities serve as centers of both innovation and ecological balance. Further investigation is necessary to explore the long-term presence of nanoparticles in the environment, their ability to induce genetic changes in plants over multiple generations, and their overall impact on ecosystems. In conclusion, this review summarizes significant scientific discoveries with broad implications beyond the confines of laboratories. This highlights the importance of understanding the interactions between plants and nanomaterials within the wider scope of environmental health. By considering these insights, we initiated a path towards the responsible utilization of nanomaterials, environmentally friendly management of pollution, and interdisciplinary exploration. We have the responsibility to balance scientific advancement and environmental preservation to create a sustainable future that combines nature's wisdom with human innovation.


Asunto(s)
Nanopartículas , Nanoestructuras , Humanos , Ecosistema , Contaminación Ambiental , Ambiente , Plantas/metabolismo
13.
Environ Res ; 244: 117888, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38097060

RESUMEN

In the face of escalating environmental concerns, particularly the pervasive issue of non-biodegradable fast-food packaging waste, this study introduces a ground-breaking solution that not only addresses waste management but also advances biomedical technology. Utilizing the underexploited resource of Fucoidan, a sulfated polysaccharide from brown algae, we have innovatively transformed fast-food packaging waste into eco-friendly fluorescent carbon dots (FPCDs). These FPCDs were meticulously characterized through advanced techniques like FT-IR, TEM, and XRD, shedding light on their unique structure, morphology, and composition. A significant discovery of this study is the potent antimicrobial properties of these FPCDs, which demonstrate remarkable effectiveness against specific bacterial and fungal strains. This opens new avenues in the realm of biomedical applications, including imaging, drug delivery, and biosensing. Furthermore, extensive toxicity assessments, including the Brine shrimp lethality assay and Adult Artemia toxicity tests, underscore the safety of these nanoparticles, bolstering their applicability in sensitive medical scenarios. Our research presents a compelling dual approach, ingeniously tackling environmental sustainability issues by repurposing waste while simultaneously creating valuable materials for biomedical use. This dual benefit underscores the transformative potential of our approach, setting a precedent in both waste management and medical innovation.


Asunto(s)
Antiinfecciosos , Embalaje de Alimentos , Alimento Perdido y Desperdiciado , Carbono , Espectroscopía Infrarroja por Transformada de Fourier , Antiinfecciosos/toxicidad
14.
Prog Biophys Mol Biol ; 185: 17-32, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37821048

RESUMEN

The convergence of biology and computational science has ushered in a revolutionary era, revolutionizing our understanding of biological systems and providing novel solutions to global problems. The field of genetic engineering has facilitated the manipulation of genetic codes, thus providing opportunities for the advancement of innovative disease therapies and environmental enhancements. The emergence of bio-molecular simulation represents a significant advancement in this particular field, as it offers the ability to gain microscopic insights into molecular-level biological processes over extended periods. Biomolecular simulation plays a crucial role in advancing our comprehension of organismal mechanisms by establishing connections between molecular structures, interactions, and biological functions. The field of computational biology has demonstrated its significance in deciphering intricate biological enigmas through the utilization of mathematical models and algorithms. The process of decoding the human genome has resulted in the advancement of therapies for a wide range of genetic disorders, while the simulation of biological systems contributes to the identification of novel pharmaceutical compounds. The potential of biomolecular simulation and computational biology is vast and limitless. As the exploration of the underlying principles that govern living organisms progresses, the potential impact of this understanding on cancer treatment, environmental restoration, and other domains is anticipated to be transformative. This review examines the notable advancements achieved in the field of computational biology, emphasizing its potential to revolutionize the comprehension and enhancement of biological systems.


Asunto(s)
Biología Computacional , Modelos Biológicos , Humanos , Biología Computacional/métodos , Simulación por Computador , Modelos Teóricos , Ingeniería Genética
15.
J Biomol Struct Dyn ; : 1-14, 2023 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-37534448

RESUMEN

According to worldwide health data, cancer, and inflammatory illnesses are on the rise and are among the most common causes of death. Across the world, these types of health problems are now considered top priorities for government health organizations. Hence, this study aimed to investigate medicinal plants' potential for treating cancer and inflammatory disorders. This network pharmacology analysis aims to learn more about the potential targets and mechanisms of action for the bioactive ingredients in Sauropus androgynus (L.) Merr L. The compound-target network and protein-protein interaction analysis were built using the STRING database. Using Network Analyst, Gene Ontology, and Kyoto Encyclopaedia of Genes and Genomes, pathway enrichment was performed on the hub genes. 1-hexadecanol was shown to inhibit drug-metabolizing enzymes in a pharmacokinetic investigation. Those samples of 1-hexadecanol were found to be 1-hexadecanol (BBB 0.783), GI High, Pgp Substrate Yes, CYP2C19 Inhibitor Yes, CYP2D6 Yes, and HI -89.803. The intermolecular binding energies for 1-hexadecanol (4-DRI, -8.2 kcal/mol) are evaluated. These results from a study on S. androgynus used molecular docking and network pharmacology to gain insight into the prime target genes and potential mechanisms identified for AKT1, mTOR, AR, PPID, FKBP5, and NR3C1. The PI3K-Akt signalling pathway has become an important regulatory node in various pathological processes requiring coordinated actions. Stability and favourable conformations have been resolved by considering nonbonding interactions such as electrostatic and hydrogen bonds in MD simulations of the perfect molecules using the Desmond package. Thus, using an appropriate platform of network pharmacology, molecular docking, and in vitro experiments, this study provides for the first time a clearer knowledge of the anti-cancer and anti-inflammatory molecular bioactivities of S. androgynus. Further in vitro and in vivo confirmations are strongly needed to determine the efficacy and therapeutic effects of 1-hexadecanol in the biological process.Communicated by Ramaswamy H. Sarma.

16.
Front Bioeng Biotechnol ; 11: 1211143, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37397968

RESUMEN

Purpose: In the contemporary era, a significant number of individuals encounter various health issues, including digestive system ailments, even during their advanced years. The major purpose of this study is based on certain observations that are made in internal digestive systems in order to prevent severe cause that usually occurs in elderly people. Approach: To solve the purpose of the proposed method the proposed system is introduced with advanced features and parametric monitoring system that are based on wireless sensor setups. The parametric monitoring system is integrated with neural network where certain control actions are taken to prevent gastrointestinal activities at reduced data loss. Results: The outcome of the combined process is examined based on four different cases that is designed based on analytical model where control parameters and weight establishments are also determined. As the internal digestive system is monitored the data loss that is present with wireless sensor network must be reduced and proposed approach prevents such data loss with an optimized value of 1.39%. Conclusion: Parametric cases were conducted to evaluate the efficacy of neural networks. The findings indicate a significantly higher effectiveness rate of approximately 68% when compared to the control cases.

17.
Chemosphere ; 337: 139397, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37406942

RESUMEN

Herein, the synthesis, characterization, and reduction properties of 2D TiO2 aerogel powder decorated with BiVO4 (TiO2/BiVO4) were investigated for versatile applications. First, 2D TiO2 was prepared via lyophilization and subsequently modified with BiVO4 using a wet impregnation method. The morphology, structure, composition, and optical properties were evaluated using transmission electron microscopy (TEM), X-ray diffractometry (XRD), laser-induced breakdown spectroscopy (LIBS), and diffuse reflectance spectroscopy (DRS), respectively. Significantly enhanced photocurrent densities (by 3-15 times) were obtained for TiO2/BiVO4 compared to those of pure TiO2 and BiVO4. The reduction of toxic Cr(VI) to Cr(III) was assessed, including the effect of pH on overall photocatalytic efficiency. Under acidic conditions (pH âˆ¼ 2), Cr(VI) reduction efficiency reached 100% within 2 h. For photocatalytic CO2 reduction, the highest yields of CH4 and CO were obtained using TiO2/BiVO4. A higher efficiency for both applications was achieved because of the better separation of the electron-hole pairs in TiO2/BiVO4. The excellent stability of TiO2/BiVO4 over repeated runs highlights its potential for use in versatile environmental applications. The efficiency of TiO2/BiVO4 is due to the interplay of the structure, morphology, composition, and photoelectrochemical properties that favour the material for the presented herein photocatalytic applications.


Asunto(s)
Dióxido de Carbono , Luz , Cromo/química
18.
Environ Res ; 235: 116574, 2023 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-37423360

RESUMEN

The Co3O4/g-C3N4 Z-scheme composite heterojunction has been effectively built in a facile sonication-assisted hydrothermal manner. The as-synthesized optimal 0.2 M Co3O4/g-C3N4 (GCO2) composite photocatalysts (PCs) revealed admirable degradation efficiency towards methyl orange (MO, 65.1%) and methylene blue (MB, 87.9%) organic pollutant compared with bare g-C3N4 within 210 min under light irradiation. Besides, the features of investigating structural, morphological and optical properties have evidence that the unique decoration effect of Co3O4 nanoparticles (NPs) on the g-C3N4 structure with intimate interface heterojunction of well-matched band structures noticeably facilitates the photo-generated charge transport/separation efficiency, reduces the recombination rates and widens the visible-light fascination which could advantageous to upgrading photocatalytic action with superior redox ability. Especially, the probable Z-scheme photocatalytic mechanism pathway is also elucidated in detail based on the quenching results. Hence, this work delivers a facile and hopeful candidate for contaminated water remediation via visible-light photocatalysis over the efficient g-C3N4-based catalysts.


Asunto(s)
Contaminantes Ambientales , Grafito , Grafito/química
19.
Environ Res ; 235: 116634, 2023 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-37442258

RESUMEN

The development of composites for food packaging that have good mechanical and antimicrobial characteristics is still a major challenge. In applications like food packaging, the usage of poly (butylene adipate-co-terephthalate) (PBAT), which has an adversative effect on the environment and reduces petroleum resources, has grown widespread. The present work reveals PBAT composites reinforced with CNPs at a few percentages up to 5.0 wt %. The PBAT/CNPs composites were produced using the solvent casting method. The results of TGA studies, CNPs significantly enhanced the thermal stability of composites using PBAT. The mechanical strength of the PBAT composites was improved by increasing CNPs concentration. Tensile strength increased from 7.38 to 10.22 MPa, respectively. The oxygen transmission rate (OTR) decreased with increasing the CNPs concentrations. The barrier properties (H2O and O2) of PBAT were improved by the presence of CNPs. WVTR was calculated to be 108.6 ± 1.8 g/m2/day for PBAT. WVTR reduced when CNPs concentration in PBAT increased. The PCN-5.0 film sample had the lowest WVTR value, 34.1 ± 3.1 g/m2/day. For PCN-3.0, WVTR dropped by 45.39%, indicating and even with a 3.0 wt% loading of CNPs in PBAT, the rise is noticeable. Contact angle measurements indicate that PBAT/CNPs composites becomes hydrophobic after reinforcing. Gram-positive (S. aureus) and Gram-negative (E. coli) food-borne pathogenic microorganisms showed enhanced antimicrobial activity against the developed PBAT composites. The carrot pieces preserved their freshness for an extended period of 12 days while packaged in the PBAT/CNPs composite film, indicating that the film is an effective and excellent packaging for food materials.


Asunto(s)
Nanopartículas , Poliésteres , Poliésteres/química , Escherichia coli , Staphylococcus aureus , Adipatos/química , Carbono
20.
Environ Res ; 234: 116523, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37422115

RESUMEN

Plastic is now considered part and parcel of daily life due to its extensive usage. Microplastic (MP) pollution is becoming a growing worry and has been ranked as the second most critical scientific problem in the realm of ecology and the environment. Microplastics are smaller in size than the plastic and are more harmful to biotic and as well as abiotic environments. The toxicity of microplastic depends upon its shape and size and increases with an increase in its adsorption capacity and their toxicity. The reason behind their harmful nature is their small size and their large surface area-to-volume ratio. Microplastic can get inside fruits, vegetables, seeds, roots, culms, and leaves. Hence microplastic enters into the food chain. There are different entry points for microplastic to enter into the food chain. Such sources can include polluted food, beverages, spices, plastic toys, and household (packing, cooking, etc.). The concentration of microplastic in terrestrial environments is increasing day by day. Microplastic causes the destruction of soil structure; destroys soil microbiota, cause depletion of nutrients in the soil, and their absorption by plants decreases plant growth. Apart from other environmental problems caused by microplastic, human health is also badly affected by microplastic pollution present in the terrestrial environment. The presence of microplastics in the human body has been confirmed. Microplastic enters into the body of humans in different possible ways. According to their way of entering the body, microplastics cause different diseases in humans. MPs also cause negative effects on the human endocrine system. At the ecosystem level, the impacts of microplastic are interconnected and can disrupt ecological processes. Although recently different papers have been published on several aspects of the microplastic present in the terrestrial environment but there is no complete overview that focus on the interrelationship of MPs in plants, and soil and their effect on higher animals like a human. This review provides a completely detailed overview of existing knowledge about sources, occurrences, transport, and effects of microplastic on the food chain and soil quality and their ecotoxicological effects on plants and humans.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Animales , Humanos , Microplásticos/toxicidad , Plásticos/toxicidad , Ecosistema , Contaminación Ambiental , Suelo , Plantas , Monitoreo del Ambiente , Contaminantes Químicos del Agua/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...