Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 62(29): e202304313, 2023 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-37212616

RESUMEN

Hydrogen-bonded organic frameworks (HOFs) are ordered supramolecular solid structures, however, nothing much explored as centimetre-scale self-standing films. The fabrication of such crystals comprising self-supported films is challenging due to the limited flexibility and interaction of the crystals, and therefore studies on two-dimensional macrostructures of HOFs are limited to external supports. Herein, we introduce a novel chemical gradient strategy to fabricate a crystal-deposited HOF film on an in situ-formed covalent organic polymer film (Tam-Bdca-CGHOF). The fabricated film showed versatility in chemical bonding along its thickness from covalent to hydrogen-bonded network. The kinetic-controlled Tam-Bdca-CGHOF showed enhanced proton conductivity (8.3×10-5  S cm-1 ) compared to its rapid kinetic analogue, Tam-Bdca-COP (2.1×10-5  S cm-1 ), which signifies the advantage of bonding-engineering in the same system.

2.
Chem Commun (Camb) ; 59(18): 2608-2611, 2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36757151

RESUMEN

A novel class of copper-based 2D-c-MOF was synthesized from 1,3,5-triformylphloroglucinol using green mechano-chemistry. Herein, metal coordination with the salicylaldehyde functional moiety was explored for the first time in MOFs. Moreover, an intrinsic semiconductive copper-based SA-MOF thin film was fabricated using an in situ salt-free method at room temperature.

3.
Nanoscale ; 14(42): 15928-15941, 2022 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-36268905

RESUMEN

Cobalt and iron metal-based oxide catalysts play a significant role in energy devices. To unravel some interesting parameters, we have synthesized metal oxides of cobalt and iron (i.e. Fe2O3, Co3O4, Co2FeO4 and CoFe2O4), and measured the effect of the valence band structure, morphology, size and defects in the nanoparticles towards the electrocatalytic hydrogen evolution reaction (HER), the oxygen evolution reaction (OER) and the oxygen reduction reaction (ORR). The compositional variations in the cobalt and iron precursors significantly alter the particle size from 60 to <10 nm and simultaneously the shape of the particles (cubic and spherical). The Tauc plot obtained from the solution phase ultraviolet (UV) spectra of the nanoparticles showed band gaps of 2.2, 2.3, 2.5 and 2.8 eV for Fe2O3, Co3O4, Co2FeO4 and CoFe2O4, respectively. Further, the valence band structure and work function analysis using ultraviolet photoelectron spectroscopy (UPS) and core level X-ray photoelectron spectroscopy (XPS) analyses provided better structural insight into metal oxide catalysts. In the Co3O4 system, the valence band structure favors the HER and Fe2O3 favors the OER. The composites Co2FeO4 and CoFe2O4 show a significant change in their core level (O 1s, Co 2p and Fe 2p spectra) and valence band structure. Co3O4 shows an overpotential of 370 mV against 416 mV for Fe2O3 at a current density of 2 mA cm-2 for the HER. Similarly, Fe2O3 shows an overpotential of 410 mV against the 435 mV for Co3O4 at a current density of 10 mA cm-2 for the OER. However, for the ORR, Co3O4 shows 70 mV improvement in the half-wave potential against Fe2O3. The composites (Co2FeO4 and CoFe2O4) display better performance compared to their respective parent oxide systems (i.e., Co3O4 and Fe2O3, respectively) in terms of the ORR half-wave potential, which can be attributed to the presence of the oxygen vacancies over the surface in these systems. This was further corroborated in density functional theory (DFT) simulations, wherein the oxygen vacancy formation on the surface of CoFe2O4(001) was calculated to be significantly lower (∼50 kJ mol-1) compared to Co3O4 (001). The band diagram of the nanoparticles constructed from the various spectroscopic measurements with work function and band gap provides in-depth understanding of the electrocatalytic process.

4.
Chem Commun (Camb) ; 58(40): 5972-5975, 2022 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-35481700

RESUMEN

ß-Alaninium oxalate hemihydrate, glycinium oxalate, and L-leucinium oxalate salt-cocrystals as non-porous self-assembled hydrogen-bonded organic frameworks afforded proton conductivity of 2.43 × 10-2 S cm-1 (60 °C, 95% RH), 3.03 × 10-2 S cm-1 (60 °C, 95% RH), and 1.19 × 10-2 S cm-1 (80 °C, 95% RH), respectively. These materials possess an extensive 3-dimensional network of hydrogen bonds in their crystal structures, making them efficient proton conducting membranes. The reduction in conductivity values over 10-1 S cm-1 order upon exposure of the samples to a D2O atmosphere in extreme conditions ratified the role of humidity for the conduction of protons. This work explores the relationship between structural features and proton conductivity for the design of proton conducting membranes that are easy to synthesize, eco-friendly, and cheap with potential for futuristic applications.


Asunto(s)
Aminoácidos , Protones , Hidrógeno , Enlace de Hidrógeno , Oxalatos
5.
Org Lett ; 24(16): 3038-3042, 2022 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-35439020

RESUMEN

π-acidic boxes exhibiting electron reservoir and proton conduction are unprecedented because of their instability in water. We present the synthesis of one of the strongest electron-deficient ionic boxes showing e- uptake as well as proton conductivity. Two large anions fit in the box to form anion-π interactions and form infinite anion-solvent wires. The box with NO3-···water wires confers high proton conductivity and presents the first example that manifests redox and ionic functionality in an organic electron-deficient macrocycle.

6.
ACS Appl Mater Interfaces ; 14(14): 16222-16232, 2022 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-35377138

RESUMEN

Electrocatalytic oxidation of simple organic molecules offers a promising strategy to combat the sluggish kinetics of the water oxidation reaction (WOR). The low potential requirement, inhibition of the crossover of gases, and formation of value-added products at the anode are benefits of the electrocatalytic oxidation of organic molecules. Herein, we developed cobalt-nickel-based layered double hydroxide (LDH) as a robust material for the electrocatalytic oxidation of alcohols and urea at the anode, replacing the WOR. A facile synthesis protocol to form LDHs with different ratios of Co and Ni is adapted. It demonstrates that the reactants could be efficiently oxidized to concomitant chemical products at the anode. The half-cell study shows an onset potential of 1.30 V for benzyl alcohol oxidation reaction (BAOR), 1.36 V for glycerol oxidation reaction (GOR), 1.33 V for ethanol oxidation reaction (EOR), and 1.32 V for urea oxidation reaction (UOR) compared with 1.53 V for WOR. Notably, the hybrid electrolyzer in a full-cell configuration significantly reduces the overall cell voltage at a 20 mA cm-2 current density by ∼15% while coupling with the BAOR, EOR, and GOR and ∼12% with the UOR as the anodic half-cell reaction. Furthermore, the efficiency of hydrogen generation remains unhampered with the types of oxidation reactions (alcohols and urea) occurring at the anode. This work demonstrates the prospects of lowering the overall cell voltage in the case of a water electrolyzer by integrating the hydrogen evolution reaction with suitable organic molecule oxidation.

7.
ACS Appl Mater Interfaces ; 13(7): 8147-8158, 2021 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-33583179

RESUMEN

Recent advancements on the development of nonprecious electrocatalysts with iron (Fe) incorporated active centers have generated confidence on realizing cost-effective proton exchange membrane fuel cells (PEMFCs). However, most of these catalysts that emerged as a substitution for the platinum supported on carbon (Pt/C) catalysts in oxygen reduction reaction (ORR) are active under basic conditions, and their feasibility in PEMFCs remains as a challenge. In this scenario, this work reports the synthesis of a Pt-free oxygen reduction electrocatalyst prepared by the annealing of polydopamine grown melamine foam. The prepared catalyst has a three-dimensional (3D) interconnected bilayer network structure possessing the carbon nitride backbone wrapped by graphitic carbon layer bearing iron carbides and nitrides as the active centers (3D-FePDC). Interestingly, the 3D-FePDC catalyst displayed an ORR activity both under acidic and basic conditions. Whereas the ORR performance of 3D-FePDC closely matches that of the commercial Pt/C in the basic medium, it displays only a low overpotential value of 60 mV under acidic conditions compared to its Pt counterpart. The kinetics of ORR on 3D-FePDC is found to be similar to the four-electron (4e) reduction pathway displayed by Pt/C. Testing of a PEMFC in a single cell mode by using 3D-FePDC as the cathode catalyst and Nafion membrane delivered a maximum power density of 278 mW cm-2, which is a promising value expected from a system based on the nonprecious metal cathode. Ultimately, as a cost-effective catalyst that can effectively perform irrespective of the pH conditions, 3D-FePDC offers significant prospects in the areas like fuel cells and metal-air batteries which work in acidic and/or basic conditions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...