Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Colloid Interface Sci ; 608(Pt 3): 2482-2492, 2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-34785057

RESUMEN

Here, cobalt-doped copper bismuth oxide (Co-CuBi2O4) was synthesized via a facile hydrothermal method for photoelectrocatalytic (PEC) hydrogen production. The results disclosed that the 5% Co-doped CuBi2O4 has better PEC activity which is ∼3 fold higher than pristine CuBi2O4. The doping of cobalt in CuBi2O4 improves the interfacial charge transfer at an electrode/electrolyte interface and reduces the recombination rate of photogenerated electron-hole pairs. This higher performed 5% Co-doped CuBi2O4 photocathode further modified with TiO2-P25 to form a Co-CuBi2O4/TiO2 p-n heterojunction. This Co-CuBi2O4/TiO2 photocathode displayed a photocurrent density of 330 µA cm-2 at +0.5 V vs. RHE which was ∼2 fold higher than Co-CuBi2O4. Because this p-n junction affords inner electric field in the space charge region that helps for further minimization of electron-hole recombination, which facilitate efficient charge separation and transport thereby enhance the PEC water reduction.


Asunto(s)
Titanio , Agua , Electrodos
2.
J Colloid Interface Sci ; 602: 437-451, 2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34139539

RESUMEN

Sluggish charge transfers at the electrode/electrolyte interface and fast recombination of electron-hole pairs limit the photoelectrocatalytic water-splitting ability of the bismuth tungstate (Bi2WO6). To address these issues, sulfur doped-graphitic carbon nitride/bismuth tungstate (S-g-C3N4/Bi2WO6) heterostructured hybrid material with different wt% of S-g-C3N4 were constructed via an ultrasonic approach. The formation of heterostructure offers well-separated electron-hole pairs, thereby improving the charge transfer process, and boosting water oxidation kinetics on the surface of modified electrodes. Electrochemical impedance analysis confirms the rapid charge transfer process and quick electrochemical reaction at the electrode/electrolyte interface, which quenches the charge recombination process. The S-g-C3N4/Bi2WO6 with 3 wt% of S-g-C3N4 photoanode delivers ~43, ~18 and ~2-folds higher applied bias photon-to-current efficiency than S-g-C3N4, Bi2WO6, and g-C3N4/Bi2WO6 (3 wt% of g-C3N4) photoanodes, respectively. From the combination of UV-Vis, XPS valance band, and Mott-Schottky analysis the plausible band edge positions of the Bi2WO6 and S-g-C3N4 were calculated. Based on the band structure, we have concluded that the S-g-C3N4/Bi2WO6 hybrid photoanode follows a type-II charge transfer mechanism to promote the photoelectrocatalytic water splitting ability.

3.
J Colloid Interface Sci ; 591: 85-95, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33592528

RESUMEN

Cobalt incorporated sulfur-doped graphitic carbon nitride with bismuth oxychloride (Co/S-gC3N4/BiOCl) heterojunction is prepared by an ultrasonically assisted hydrothermal treatment. The heterojunction materials have employed in photoelectrochemical (PEC) water splitting. The PEC activity and stability of the materials are promoted by constructing an interface between the visible light active semiconductor photocatalyst and cocatalysts. The photocurrent density of Co-9% S-gC3N4/BiOCl has attained 393.0 µA cm-2 at 1.23 V vs. RHE, which is 7-fold larger than BiOCl and ~3-fold higher than 9% S-gC3N4/BiOCl. The enhanced PEC activity can be attributed to the improved electron-hole charge separation and the boosted charge transfer is confirmed by photoluminescence (PL) and electrochemical impedance spectroscopy (EIS) analysis. The fabricated Co/S-gC3N4/BiOCl nanohybrid material has exhibited high stability of up to 10,800 s (3 h) at 1.23 V vs. RHE during PEC water splitting reaction and the obtained photo-conversion efficiency is 3.7-fold greater than S-gC3N4/BiOCl and 17-fold higher than BiOCl. The FESEM and HRTEM images have revealed the formation of heterojunction interface between S-gC3N4 and BiOCl and the elemental mapping has confirmed the presence of cobalt over S-gC3N4/BiOCl. The heterojunction interface has facilitated the photo-excited charge separation and transport across the electrode/electrolyte interface and also the flat-band potential, which is confirmed by Mott-Schottky analysis.

4.
J Colloid Interface Sci ; 584: 204-215, 2021 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-33069019

RESUMEN

This work demonstrates a high-performance hybrid asymmetric supercapacitor (HASC) workable in very high current density of 30 A g-1 with in-situ pyrolytic processed sulfur-doped graphitic carbon nitride/cobalt disulfide (S-gC3N4/CoS2) materials and bio-derived carbon configuration and achievement of high electrochemical stability of 89% over 100,000 cycles with the coulombic efficiency of 99.6%. In the electrochemical studies, the S-gC3N4/CoS2-II electrode showed a high specific capacity of 180 C g-1 at 1 A g-1 current density in the half-cell configuration. The HASC cell was fabricated using S-gC3N4/CoS2-II material and orange peel derived activated carbon as a positive and negative electrode with a maximum operating cell potential of 1.6 V, respectively. The fabricated HASC delivered a high energy density of 26.7 Wh kg-1 and power density of 19.8 kW kg-1 in aqueous electrolyte. The prominent properties in specific capacity and cycling stability could be attributed to the CoS2 nanoparticles engulfed into the S-gC3N4 framework which provides short transport distance of the ions, strong interfacial interaction, and improving structural stability of the S-gC3N4/CoS2-II materials.

5.
Dalton Trans ; 49(16): 5336-5351, 2020 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-32253409

RESUMEN

Trifunctional nickel tin sulfide (NixSn2xS4x) with a thiospinel-like structure composited with multiwalled carbon nanotubes (MWCNTs) (M-NixSn2xS4x) was synthesized by a facile method. The unit cell arrangement of the prepared composite was studied by density functional theory, and the theoretical interpretation satisfactorily inferred the presence of a synergistic effect between the thiospinel and MWCNTs. The high metallic conductivity and superior electrocatalytic activity of the M-NixSn2xS4x composite endow it with diverse applications. The composite shows promise as a counter electrode for dye-sensitized solar cells (efficiency of 4.67% for fluorine-doped indium tin oxide compared to 5.23% for platinum); an efficient catalyst for the hydrogen evolution reaction with good cycling stability and a low overpotential of -41 mV at a cathode current density of 10 mA cm2 and a Tafel slope of 43 mV dec-1 on a graphite sheet electrode; and an impressive capacitance material on a graphite sheet electrode alternative to expensive current collectors such as Ni foam, with a specific capacitance value of 1200 F g-1 at a current density of 1 A g-1 and a long life span of 92.6% that is retained for up to 15 000 cycles.

6.
J Environ Manage ; 262: 110282, 2020 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-32090885

RESUMEN

A facile and eco-friendly green synthesis of silver-copper@zinc oxide (Ag-Cu@ZnO) nanocomposite using Acacia caesia flower extract and their application on catalytic reduction of toxic compounds and electrochemical sensing of nitrite ions are reported. The phytochemicals present in the extract were utilized for the Ag-Cu metal nanoparticles synthesis and also enhanced the binding capability between ZnO and Ag-Cu NPs. The synthesized nanocomposites were characterized by XRD, UV-Vis spectroscopy, Raman spectra, FTIR, SEM, TEM, EDX, XPS and ICP-AES for the formation of Ag-Cu NPs on ZnO. The Ag-Cu@ZnO nanocomposite showed better catalytic efficiency as compared to monometallic nanoparticles for 4-nitrophenol to 4-aminophenol conversion and Rhodamine B and Congo red dye degradation with 99% efficiency up to four cycles. The Ag-Cu@ZnO modified GC electrode showed enhanced catalytic activity towards nitrite oxidation, and it exhibited better performance compared to the other nanocomposites. An appreciable detection limit (17 µM) was achieved with excellent sensitivity for nitrite detection. The sensor was highly selective even in a many-fold higher concentration of co-existing interfering compounds. The good catalytic and electrochemical sensing is mainly ascribed due to the synergistic effect of Ag-Cu on the ZnO in the Ag-Cu@ZnO nanocomposite materials.


Asunto(s)
Nanopartículas del Metal , Nanocompuestos , Óxido de Zinc , Nitritos , Plata
7.
Nanoscale Adv ; 2(9): 4242-4250, 2020 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-36132783

RESUMEN

A nickel sulfide-incorporated sulfur-doped graphitic carbon nitride (NiS/S-g-C3N4) nanohybrid was utilized as an interface material for the non-enzymatic sensing of glucose in an alkaline medium (0.1 M NaOH). The precursors used in the preparation of NiS/S-g-C3N4 hybrid were thiourea and nickel nitrate hexahydrate as the sulfur and nickel sources, respectively. The HRTEM results reveal that NiS nanoparticles incorporated on the S-g-C3N4 nanosheet surface could enhance the electrocatalytic activity and electrical conductivity. The prepared NiS/S-g-C3N4 crystalline nature, surface functionalities, graphitic nature, thermal stability and surface composition were investigated using XRD, FT-IR, Raman spectroscopy, TGA and XPS analyses. The NiS/S-g-C3N4 modified electrode was used for the non-enzymatic sensing of glucose at an applied potential of 0.55 V vs. Ag/AgCl with a detection limit of 1.5 µM (S/N = 3), sensitivity of 80 µA mM-1 cm-2 and the response time of the fabricated sensor was close to 5 s. Different inorganic ions and organic substances did not interfere during glucose sensing. The NiS/S-g-C3N4 nanohybrid material could be extended for a real sample analysis and open the way for diverse opportunities in the electrochemical sensing of glucose.

8.
Ultrason Sonochem ; 62: 104855, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31806549

RESUMEN

We describe the ultrasonic assisted preparation of barium stannate-graphitic carbon nitride nanocomposite (BSO-gCN) by a simple method and its application in electrochemical detection of 4-nitrophenol via electro-oxidation. A bath type ultrasonic cleaner with ultrasonic power and ultrasonic frequency of 100 W and 50 Hz, respectively, was used for the synthesis of BSO-gCN nanocomposite material. The prepared BSO-gCN nanocomposite was characterized by employing several spectroscopic and microscopic techniques such as X-ray diffraction, X-ray photoelectron spectroscopy, fourier transform infra-red, field emission scanning electron microscopy, and high resolution transmission electron microscopy, to unravel the structural and electronic features of the prepared nanocomposite. The BSO-gCN was drop-casted on a pre-treated glassy carbon electrode (GCE), and their sensor electrode was utilized for electrochemical sensing of 4-nitrophenol (4-NP). The BSO-gCN modified GCE exhibited better electrochemical sensing behavior than the bare GCE and other investigated electrodes. The electroanalytical parameters such as charge transfer coefficient (α = 0.5), the rate constant for electron transfer (ks = 1.16 s-1) and number of electron transferred were calculated. Linear sweep voltammetry (LSV) exhibited increase in peak current linearly with 4-NP concentration in the range between 1.6 and 50 µM. The lowest detection limit (LoD) was calculated to be 1 µM and sensitivity of 0.81 µA µM-1 cm-2. A 100-fold excess of various ions, such as Ca2+, Na+, K+, Cl-, I-, CO32-, NO3, NH4+ and SO42- did not able to interfere with the determination of 4-NP and high sensitivity for detecting 4-NP in real samples was achieved. This newly developed BSO-gCN could be a potential candidate for electrochemical sensor applications.

9.
Sci Rep ; 8(1): 10830, 2018 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-29997395

RESUMEN

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has not been fixed in the paper.

10.
Sci Rep ; 8(1): 3093, 2018 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-29449631

RESUMEN

The energy density of conventional supercapacitors is in the range of 6-10 Wh kg-1, which has restricted them from many applications that require devices with long durations. Herein, we report a method for enhancing the energy density of a device through the parallel stacking of five copper foils coated on each side with graphene nanoplatelets. Microporous papers immersed in 2 M aqueous sodium sulphate were used as separators. With a low contact resistance of 0.05 Ω, the supercapacitor yielded an optimum specific energy density and a specific power density of 24.64 Wh kg-1 and 402 W kg-1 at 0.8 V, respectively. The working potential was increased to 2.4 V when three of the supercapacitors were connected in series, forming a tandem device. Its potential for real applications was manifested by the ability to light up a light-emitting diode for 40 s after charging for 60 s.

11.
Biosens Bioelectron ; 89(Pt 1): 673-680, 2017 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-26718548

RESUMEN

In this study, a disposable and simple electrochemical immunosensor was fabricated for the detection of carcinoembryonic antigen. In this method, silver nanoparticles (AgNPs) were mixed with reduced graphene oxide (rGO) to modify the surface of screen-printed carbon electrode (SPE). Initially, AgNPs-rGO modified-SPEs were fabricated by using simple electrochemical deposition method. Then the carcinoembryonic antigen (CEA) was immobilized between the primary antibody and horseradish peroxidase (HRP)-conjugated secondary antibody onto AgNPs-rGO modified-SPEs to fabricate a sandwich-type electrochemical immunosensor. The proposed method could detect the CEA with a linear range of 0.05-0.50µgmL-1 and a detection limit down to 0.035µgmL-1 as compared to its non-sandwich counterpart, which yielded a linear range of 0.05-0.40µgmL-1, with a detection limit of 0.042µgmL-1. The immunosensor showed good performance in the detection of carcinoembryonic antigen, exhibiting a simple, rapid and low-cost. The immunosensor showed a higher sensitivity than an enzymeless sensor.


Asunto(s)
Técnicas Biosensibles/instrumentación , Antígeno Carcinoembrionario/análisis , Técnicas Electroquímicas/instrumentación , Grafito/química , Inmunoensayo/instrumentación , Nanopartículas del Metal/química , Plata/química , Anticuerpos Inmovilizados/química , Técnicas Biosensibles/economía , Técnicas Electroquímicas/economía , Electrodos , Peroxidasa de Rábano Silvestre/química , Humanos , Inmunoensayo/economía , Límite de Detección , Nanopartículas del Metal/ultraestructura , Oxidación-Reducción , Óxidos/química
12.
PLoS One ; 11(5): e0154557, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27176635

RESUMEN

A photoelectrochemical (PEC) sensor with excellent sensitivity and detection toward copper (II) ions (Cu2+) was developed using a cadmium sulphide-reduced graphene oxide (CdS-rGO) nanocomposite on an indium tin oxide (ITO) surface, with triethanolamine (TEA) used as the sacrificial electron donor. The CdS nanoparticles were initially synthesized via the aerosol-assisted chemical vapor deposition (AACVD) method using cadmium acetate and thiourea as the precursors to Cd2+ and S2-, respectively. Graphene oxide (GO) was then dip-coated onto the CdS electrode and sintered under an argon gas flow (50 mL/min) for the reduction process. The nanostructured CdS was adhered securely to the ITO by a continuous network of rGO that also acted as an avenue to intensify the transfer of electrons from the conduction band of CdS. The photoelectrochemical results indicated that the ITO/CdS-rGO photoelectrode could facilitate broad UV-visible light absorption, which would lead to a higher and steady-state photocurrent response in the presence of TEA in 0.1 M KCl. The photocurrent decreased with an increase in the concentration of Cu2+ ions. The photoelectrode response for Cu2+ ion detection had a linear range of 0.5-120 µM, with a limit of detection (LoD) of 16 nM. The proposed PEC sensor displayed ultra-sensitivity and good selectivity toward Cu2+ ion detection.


Asunto(s)
Compuestos de Cadmio/química , Cobre/análisis , Técnicas Electroquímicas/métodos , Grafito/química , Luz , Sulfuros/química , Espectroscopía Dieléctrica , Electrodos , Iones , Nanocompuestos/ultraestructura , Nanosferas/ultraestructura , Oxidación-Reducción , Espectrometría Raman , Compuestos de Estaño/química , Difracción de Rayos X
13.
J Hazard Mater ; 304: 400-8, 2016 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-26595899

RESUMEN

A newly developed CdS/rGO/CC electrode was prepared based on a flexible carbon cloth (CC) substrate with cadmium sulfide (CdS) nanoparticles and reduced graphene oxide (rGO). The CdS was synthesized using an aerosol-assisted chemical vapor deposition (AACVD) method, and the graphene oxide was thermally reduced on the modified electrode surface. The existence of rGO in the CdS-modified electrode increased the photocurrent intensity of the CdS/rGO/CC-modified electrode by three orders of magnitude, compared to that of the CdS/ITO electrode and two orders of magnitude higher than the CdS/CC electrode. A new visible-light-prompt photoelectrochemical sensor was developed based on the competitive binding reaction of Cu(2+) and CdS on the electrode surface. The results showed that the effect of the Cu(2+) on the photocurrent response was concentration-dependent over the linear ranges of 0.1-1.0 µM and 1.0-40.0 µM with a detection limit of 0.05 µM. The results of a selectivity test showed that this modified electrode has a high response toward Cu(2+) compared to other heavy metal ions. The proposed CdS/rGO/CC electrode provided a significantly high potential current compared to other reported values, and could be a practical tool for the fast, sensitive, and selective determination of Cu(2+).

14.
Mater Sci Eng C Mater Biol Appl ; 58: 666-74, 2016 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-26478358

RESUMEN

Immunosensors based on gold nanoparticles and reduced graphene oxide (AuNPs/rGO)-modified screen-printed electrodes (SPEs) were successfully synthesized using an electrochemical deposition method. The modified SPEs were characterized using a field emission scanning electron microscope (FESEM) and Raman spectroscopy to analyze the morphology and composition of AuNPs and rGO. Both the FESEM and Raman spectroscopy revealed that the AuNPs were successfully anchored on the thin film of rGO deposited on the surface of the SPEs. Characterization with a ferri-ferrocyanide couple [Fe(CN)6(3-/4-)] showed that the electron transfer kinetic between the analyte and electrode was enhanced after the modification with the AuNPs/rGO composite on the electrode surface, in addition to increasing the effective surface area of the electrode. The modified SPE was immobilized with a sandwich type immunosensor to mimic the ELISA (enzyme-linked immunosorbent assay) immunoassay. The modified SPE that was fortified with the sandwich type immunosensor exhibited double electrochemical responses in the detection of carcinoembryonic antigen (CEA), with linear ranges of 0.5-50 ng/mL and 250-2000 ng/mL and limits of detection of 0.28 ng/mL and 181.5 ng/mL, respectively.


Asunto(s)
Técnicas Biosensibles/métodos , Antígeno Carcinoembrionario/análisis , Técnicas Electroquímicas/métodos , Oro/química , Grafito/química , Nanopartículas del Metal/química , Animales , Anticuerpos Inmovilizados , Técnicas Biosensibles/instrumentación , Técnicas Electroquímicas/instrumentación , Electrodos , Límite de Detección , Modelos Lineales , Ratones , Albúmina Sérica Bovina
15.
J Nanosci Nanotechnol ; 15(9): 6965-72, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26716269

RESUMEN

Titanium dioxide-gold nanocomposite ((TiO2-Au)(nps)) materials dispersed in poly(diallyldimethylammonium chloride) (PDDA) polymer electrolyte are employed as solid-state electrolytes in a dye-sensitized solar cell (DSSC) containing nanocrystalline TiO2 nanoparticle (P25) or (P25-Au)(nps) thin film photoanode adsorbed with a near-IR dye sensitizer, nickel-phthalocyanine (NiPcTs). The photocurrent-photovoltage characteristics of the DSSCs are evaluated under standard AM 1.5 G simulated solar irradiation of 100 mW/cm2. The (TiO2-Au)(nps) nanocomposite material incorporated into the PDDA polymer electrolyte promotes interfacial charge transfer process, reduces crystallinity of the polymer electrolyte and enhances mobility of the /-/I3- redox couple, which are resulted in -6-fold increase in the overall solar to electrical energy conversion efficiency when compared to the unmodified polymer electrolyte based DSSC. When the P25 photoanode is replaced with the (P25-Au)(nps) photoanode, a further 8-fold increase in the overall energy conversion efficiency is achieved, owing to the increas in the charge transport through the photoanode. The photovoltaic performance of the present DSSC configuration is also compared with that of a cell sensitized by using standard N719 dye.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...