Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Indian J Microbiol ; 64(2): 343-366, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-39011025

RESUMEN

Uncontrolled usage of chemical fertilizers, climate change due to global warming, and the ever-increasing demand for food have necessitated sustainable agricultural practices. Removal of ever-increasing environmental pollutants, treatment of life-threatening diseases, and control of drug-resistant pathogens are also the need of the present time to maintain the health and hygiene of nature, as well as human beings. Research on plant-microbe interactions is paving the way to ameliorate all these sustainably. Diverse bacterial endophytes inhabiting the internal tissues of different parts of the plants promote the growth and development of their hosts by different mechanisms, such as through nutrient acquisition, phytohormone production and modulation, protection from biotic or abiotic challenges, assisting in flowering and root development, etc. Notwithstanding, efficient exploitation of endophytes in human welfare is hindered due to scarce knowledge of the molecular aspects of their interactions, community dynamics, in-planta activities, and their actual functional potential. Modern "-omics-based" technologies and genetic manipulation tools have empowered scientists to explore the diversity, dynamics, roles, and functional potential of endophytes, ultimately empowering humans to better use them in sustainable agricultural practices, especially in future harsh environmental conditions. In this review, we have discussed the diversity of bacterial endophytes, factors (biotic as well as abiotic) affecting their diversity, and their various plant growth-promoting activities. Recent developments and technological advancements for future research, such as "-omics-based" technologies, genetic engineering, genome editing, and genome engineering tools, targeting optimal utilization of the endophytes in sustainable agricultural practices, or other purposes, have also been discussed.

2.
Folia Microbiol (Praha) ; 69(1): 17-32, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38038797

RESUMEN

The family Phyllobacteriaceae is a heterogeneous assemblage of more than 146 species of bacteria assigned to its existing 18 genera. Phylogenetic analyses have shown great phylogenetic diversity and also suggested about incorrect classification of several species that need to be reassessed for their proper phylogenetic classification. However, almost 50% of the family members belong to the genus Mesorhizobium only, of which the majority are symbiotic nitrogen fixers associated with different legumes. Other major genera are Phyllobacterium, Nitratireductor, Aquamicrobium, and Aminobacter. Nitrogen-fixing, legume nodulating members are present in Aminobacter and Phyllobacterium as well. Aquamicrobium spp. can degrade environmental pollutants, like 2,4-dichlorophenol, 4-chloro-2-methylphenol, and 4-chlorophenol. Chelativorans, Pseudaminobacter, Aquibium, and Oricola are the other genera that contain multiple species having diverse metabolic capacities, the rest being single-membered genera isolated from varied environments. In addition, heavy metal and antibiotic resistance, chemolithoautotrophy, poly-ß-hydroxybutyrate storage, cellulase production, etc., are the other notable characteristics of some of the family members. In this report, we have comprehensively reviewed each of the species of the family Phyllobacteriaceae in their eco-physiological aspects and found that the family is rich with ecologically and metabolically highly diverse bacteria having great potential for human welfare and environmental clean-up.


Asunto(s)
Fabaceae , Phyllobacteriaceae , Humanos , Phyllobacteriaceae/genética , Filogenia , Bacterias/genética , Fabaceae/microbiología , Nitrógeno/metabolismo , ADN Bacteriano/metabolismo , ARN Ribosómico 16S , Análisis de Secuencia de ADN
3.
Arch Microbiol ; 205(11): 351, 2023 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-37805972

RESUMEN

Lateritic soil is the reddish to brown-colored soil composed mainly of iron or aluminium oxides, hydroxides, or oxyhydroxides. Information on bacteria that inhabit this soil type, their ecological role, and metabolic potential are scarce. We have isolated and partially characterized a bacterial strain BirBP01 from a lead, calcium, and magnesium-rich, oligotrophic subsurface lateritic soil-sample collected from 12-feet deep horizon of a laterite mining pit in Birbhum district, India. The isolate is a biofilm-forming, Gram-positive bacterium having a sarcinae arrangement, mesophilic, slightly alkaliphilic, able to produce amylase, and resistant against multiple heavy-metals. BirBP01 has the ability to bioremediate 51% of Pb, 30% of Zn, and 22% of Cu through biosorption, possibly into the biofilm matrix. The bioremediating ability of the bacterium alleviated the inhibitory effect of heavy-metals on the germination of chickpea (Cicer arietinum L.) seeds. 16S rRNA gene-based phylogenetic analysis revealed that BirBP01 is a member of the genus Micrococcus. It showed more than 99% identity of the 16S rRNA gene sequence, and clustered within the same branch of the phylogenetic tree, with strains of M. yunnanensis, M. endophyticus, and M. luteus. The ability to produce amylase, and bioremediate heavy-metals signify that Micrococcus sp. BirBP01 could be potentially a good candidate for industrial applications, and to clean up heavy-metal contaminated sites.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Micrococcus/genética , Micrococcus/metabolismo , Suelo , ARN Ribosómico 16S/genética , Filogenia , Metales Pesados/metabolismo , Bacterias/genética , Biopelículas , Contaminantes del Suelo/metabolismo , Biodegradación Ambiental
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA