Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
BMC Plant Biol ; 22(1): 620, 2022 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-36581797

RESUMEN

BACKGROUND: Protein, starch, amylose and total soluble sugars are basic metabolites of seed that influence the eating, cooking and nutritional qualities of rice. Chlorophyll is responsible for the absorption and utilization of the light energy influencing photosynthetic efficiency in rice plant. Mapping of these traits are very important for detection of more number of robust markers for improvement of these traits through molecular breeding approaches. RESULTS: A representative panel population was developed by including 120 germplasm lines from the initial shortlisted 274 lines for mapping of the six biochemical traits using 136 microsatellite markers through association mapping. A wide genetic variation was detected for the traits, total protein, starch, amylose, total soluble sugars, chlorophyll a, and chlorophyll b content in the population. Specific allele frequency, gene diversity, informative markers and other diversity parameters obtained from the population indicated the effectiveness of utilization of the population and markers for mapping of these traits. The fixation indices values estimated from the population indicated the existence of linkage disequilibrium for the six traits. The population genetic structure at K = 3 showed correspondence with majority of the members in each group for the six traits. The reported QTL, qProt1, qPC6.2, and qPC8.2 for protein content; qTSS8.1 for total soluble sugar; qAC1.2 for amylose content; qCH2 and qSLCHH for chlorophyll a (Chl. a) while qChl5D for chlorophyll b (Chl. b) were validated in this population. The QTL controlling total protein content qPC1.2; qTSS7.1, qTSS8.2 and qTSS12.1 for total soluble sugars; qSC2.1, qSC2.2, qSC6.1 and qSC11.1 for starch content; qAC11.1, qAC11.2 and qAC11.3 for amylose content; qChla8.1 for Chl. a content and qChlb7.1 and qChlb8.1 for Chl. b identified by both Generalized Linear Model and Mixed Linear Model were detected as novel QTL. The chromosomal regions on chromosome 8 at 234 cM for grain protein content and total soluble sugars and at 363 cM for Chl. a and Chl. b along with the position at 48 cM on chromosome 11 for starch and amylose content are genetic hot spots for these traits. CONCLUSION: The validated, co-localized and the novel QTL detected in this study will be useful for improvement of protein, starch, amylose, total soluble sugars and chlorophyll content in rice.


Asunto(s)
Oryza , Almidón , Almidón/química , Amilosa/metabolismo , Oryza/metabolismo , Clorofila A , Clorofila , Azúcares
2.
PLoS One ; 16(3): e0246232, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33647046

RESUMEN

Iron (Fe) toxicity is a major abiotic stress which severely reduces rice yield in many countries of the world. Genetic variation for this stress tolerance exists in rice germplasms. Mapping of gene(s)/QTL controlling the stress tolerance and transfer of the traits into high yielding rice varieties are essential for improvement against the stress. A panel population of 119 genotypes from 352 germplasm lines was constituted for detecting the candidate gene(s)/QTL through association mapping. STRUCTURE, GenAlEx and Darwin softwares were used to classify the population. The marker-trait association was detected by considering both the Generalized Linear Model (GLM) and Mixed Linear Model (MLM) analyses. Wide genetic variation was observed among the genotypes present in the panel population for the stress tolerance. Linkage disequilibrium was detected in the population for iron toxicity tolerance. The population was categorized into three genetic structure groups. Marker-trait association study considering both the Generalized Linear Model (GLM) and Mixed Linear Model (MLM) showed significant association of leaf browning index (LBI) with markers RM471, RM3, RM590 and RM243. Three novel QTL controlling Fe-toxicity tolerance were detected and designated as qFeTox4.3, qFeTox6.1 and qFeTox10.1. A QTL reported earlier in the marker interval of C955-C885 on chromosome 1 is validated using this panel population. The present study showed that QTL controlling Fe-toxicity tolerance to be co-localized with the QTL for Fe-biofortification of rice grain indicating involvement of common pathway for Fe toxicity tolerance and Fe content in rice grain. Fe-toxicity tolerance QTL qFeTox6.1 was co-localized with grain Fe-biofortification QTLs qFe6.1 and qFe6.2 on chromosome 6, whereas qFeTox10.1 was co-localized with qFe10.1 on chromosome 10. The Fe-toxicity tolerance QTL detected from this mapping study will be useful in marker-assisted breeding programs.


Asunto(s)
Cromosomas de las Plantas/genética , Tolerancia a Medicamentos/genética , Genética de Población , Hierro/toxicidad , Oryza/genética , Sitios de Carácter Cuantitativo , Mapeo Cromosómico , Oryza/efectos de los fármacos , Fenotipo , Fitomejoramiento
3.
BMC Plant Biol ; 20(1): 57, 2020 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-32019504

RESUMEN

BACKGROUND: High yielding rice varieties are usually low in grain iron (Fe) and zinc (Zn) content. These two micronutrients are involved in many enzymatic activities, lack of which cause many disorders in human body. Bio-fortification is a cheaper and easier way to improve the content of these nutrients in rice grain. RESULTS: A population panel was prepared representing all the phenotypic classes for grain Fe-Zn content from 485 germplasm lines. The panel was studied for genetic diversity, population structure and association mapping of grain Fe-Zn content in the milled rice. The population showed linkage disequilibrium showing deviation of Hardy-Weinberg's expectation for Fe-Zn content in rice. Population structure at K = 3 categorized the panel population into distinct sub-populations corroborating with their grain Fe-Zn content. STRUCTURE analysis revealed a common primary ancestor for each sub-population. Novel quantitative trait loci (QTLs) namely qFe3.3 and qFe7.3 for grain Fe and qZn2.2, qZn8.3 and qZn12.3 for Zn content were detected using association mapping. Four QTLs, namely qFe3.3, qFe7.3, qFe8.1 and qFe12.2 for grain Fe content were detected to be co-localized with qZn3.1, qZn7, qZn8.3 and qZn12.3 QTLs controlling grain Zn content, respectively. Additionally, some Fe-Zn controlling QTLs were co-localized with the yield component QTLs, qTBGW, OsSPL14 and qPN. The QTLs qFe1.1, qFe3.1, qFe5.1, qFe7.1, qFe8.1, qZn6, qZn7 and gRMm9-1 for grain Fe-Zn content reported in earlier studies were validated in this study. CONCLUSION: Novel QTLs, qFe3.3 and qFe7.3 for grain Fe and qZn2.2, qZn8.3 and qZn12.3 for Zn content were detected for these two traits. Four Fe-Zn controlling QTLs and few yield component QTLs were detected to be co-localized. The QTLs, qFe1.1, qFe3.1, qFe5.1, qFe7.1, qFe8.1, qFe3.3, qFe7.3, qZn6, qZn7, qZn2.2, qZn8.3 and qZn12.3 will be useful for biofortification of the micronutrients. Simultaneous enhancement of Fe-Zn content may be possible with yield component traits in rice.


Asunto(s)
Grano Comestible/fisiología , Hierro/metabolismo , Desequilibrio de Ligamiento , Oryza/genética , Zinc/metabolismo , Grano Comestible/genética , Variación Genética , Nutrientes/metabolismo , Fitomejoramiento , Sitios de Carácter Cuantitativo
4.
Mol Genet Genomics ; 294(4): 963-983, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30963249

RESUMEN

Rice is the staple food for majority of the global population. But, rice grain has low protein content (PC). Mapping of QTLs controlling grain PC is essential for enhancement of the trait through breeding programs. A shortlisted panel population for grain protein content was studied for genetic diversity, population structure and association mapping for grain PC. Phenotyping results showed a wide variation for grain PC. The panel population showed a moderate level of genetic diversity estimated through 98 molecular markers. AMOVA and structure analysis indicated linkage disequilibrium for grain PC and deviation of Hardy-Weinberg's expectation. The analysis showed 15% of the variation among populations and 73% among individuals in the panel population. STRUCTURE analysis categorized the panel population into three subpopulations. The analysis also revealed a common primary ancestor for each subpopulation with few admix individuals. Marker-trait association using 98 molecular markers detected 7 strongly associated QTLs for grain PC by both MLM and GLM analysis. Three novel QTLs qPC3.1, qPC5.1 and qPC9.1 were detected for controlling the grain PC. Four reported QTLs viz., qPC3, QPC8, qPC6.1 and qPC12.1 were validated for use in breeding programs. Reported QTLs, qPC6, qPC6.1 and qPC6.2 may be same QTL controlling PC in rice. A very close marker RM407 near to protein controlling QTL, qProt8 and qPC8, was detected. The study provided clue for simultaneous improvement of PC with high grain yield in rice. The strongly associated markers with grain PC, namely qPC3, qPC3.1, qPC5.1, qPC6.1, qPC8, qPC9.1 and qPC12.1, will be useful for their pyramiding for developing protein rich high yielding rice.


Asunto(s)
Estudios de Asociación Genética/métodos , Oryza/genética , Proteínas de Plantas/genética , Sitios de Carácter Cuantitativo , Biofortificación , Mapeo Cromosómico , Cromosomas de las Plantas/genética , Proteínas de Granos/metabolismo , Desequilibrio de Ligamiento , Oryza/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA