Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plants (Basel) ; 11(6)2022 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-35336599

RESUMEN

Salinization of soils and freshwater resources by natural processes and/or human activities has become an increasing issue that affects environmental services and socioeconomic relations. In addition, salinization jeopardizes agroecosystems, inducing salt stress in most cultivated plants (nutrient deficiency, pH and oxidative stress, biomass reduction), and directly affects the quality and quantity of food production. Depending on the type of salt/stress (alkaline or pH-neutral), specific approaches and solutions should be applied to ameliorate the situation on-site. Various agro-hydrotechnical (soil and water conservation, reduced tillage, mulching, rainwater harvesting, irrigation and drainage, control of seawater intrusion), biological (agroforestry, multi-cropping, cultivation of salt-resistant species, bacterial inoculation, promotion of mycorrhiza, grafting with salt-resistant rootstocks), chemical (application of organic and mineral amendments, phytohormones), bio-ecological (breeding, desalination, application of nano-based products, seed biopriming), and/or institutional solutions (salinity monitoring, integrated national and regional strategies) are very effective against salinity/salt stress and numerous other constraints. Advances in computer science (artificial intelligence, machine learning) provide rapid predictions of salinization processes from the field to the global scale, under numerous scenarios, including climate change. Thus, these results represent a comprehensive outcome and tool for a multidisciplinary approach to protect and control salinization, minimizing damages caused by salt stress.

2.
Plants (Basel) ; 11(6)2022 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-35336684

RESUMEN

Global climate change with the cyclicity of natural and climatic processes in the growing season of berry plants, causes weakening at the defense system to (a)biotic stressors, which actualize the need for accelerated cultivar-improving breeding. A new hybrid red currant material was obtained and studied by the method of interspecific hybridization. Correlation analysis was used to assess the relationship between adaptively significant and economical and biological traits. To assess intergenotypic variability, hierarchical clustering was used according to the studied features, which allowed combining three standard methods of multidimensional data analysis. Genotypes adapted to different stressors were identified. The genotypes 271-58-24, 44-5-2, 261-65-19, and 'Jonkheer van Tets' were found to have a higher ratio of bound water to free water as compared with the others. Moreover, the genotypes of 271-58-24, 261-65-19, 77-1-47, and 'Jonkheer van Tets' were found to have less cold damage during the cold periods. The two most productive genotypes were found to be the genotypes 44-5-2, 143-23-35, and 1426-21-80. A dependence of yield on the beginning of differentiation of flower buds, which led to the abundance of flower inflorescences, was revealed. Rapid restoration of leaf hydration ensured successful adaptation of genotypes to the "temperature shock" of the growing season. The genotypes 271-58-24 and 'Jonkheer van Tets' were then observed to be far from the test traits and none of these traits were observed to characterize these two genotypes. The genotypes of 261-65-19 and 77-1-47 were then observed to be characterized by their high stability to Cecidophyopsis ribis scores. Genotypes 261-65-19 and 271-58-24, obtained with the participation of 'Jonkheer van Tets' as the maternal form, showed sufficient resistance to Pseudopeziza ribis and Cecidophyopsis ribis. Overall results suggested that the hydration recovery of red currant plants is significantly important for a yield improvement. A new cultivar 'Podarok Pobediteliam (genotype 44-5-2) was obtained that meets the requirements of intensive gardening and is characterized by high adaptability, productivity, and technological effectiveness.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...