Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 164
Filtrar
1.
Nat Commun ; 15(1): 2153, 2024 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-38461323

RESUMEN

The randomized, multicenter, double-blind, placebo-controlled, phase III PEONY trial (NCT02586025) demonstrated significantly improved total pathologic complete response (primary endpoint) with dual HER2 blockade in HER2-positive early/locally advanced breast cancer, as previously reported. Here, we present the final, long-term efficacy (secondary endpoints: event-free survival, disease-free survival, overall survival) and safety analysis (62.9 months' median follow-up). Patients (female; n = 329; randomized 2:1) received neoadjuvant pertuzumab/placebo with trastuzumab and docetaxel, followed by adjuvant 5-fluorouracil, epirubicin, and cyclophosphamide, then pertuzumab/placebo with trastuzumab until disease recurrence or unacceptable toxicity, for up to 1 year. Five-year event-free survival estimates are 84.8% with pertuzumab and 73.7% with placebo (hazard ratio 0.53; 95% confidence interval 0.32-0.89); 5-year disease-free survival rates are 86.0% and 75.0%, respectively (hazard ratio 0.52; 95% confidence interval 0.30-0.88). Safety data are consistent with the known pertuzumab safety profile and generally comparable between arms, except for diarrhea. Limitations include the lack of ado-trastuzumab emtansine as an option for patients with residual disease and the descriptive nature of the secondary, long-term efficacy endpoints. PEONY confirms the positive benefit:risk ratio of neoadjuvant/adjuvant pertuzumab, trastuzumab, and docetaxel treatment in this patient population.


Asunto(s)
Anticuerpos Monoclonales Humanizados , Neoplasias de la Mama , Femenino , Humanos , Adyuvantes Inmunológicos/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Docetaxel/uso terapéutico , Terapia Neoadyuvante , Recurrencia Local de Neoplasia/patología , Receptor ErbB-2/uso terapéutico , Trastuzumab/uso terapéutico
3.
Front Oncol ; 13: 1113115, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37483500

RESUMEN

Background: Luminal B and triple-negative breast cancer (TNBC) are malignant subtypes of breast cancer (BC), which can be attributed to the multifaceted roles of tissue-derived exosomes (T-exos). Competing endogenous RNA (ceRNA) networks can regulate gene expression post-transcriptionally. Methods: RNAs in T-exos from luminal B BC (n=8) and TNBC (n=8) patients were compared with those from persons with benign breast disease (n=8). The differentially expressed (DE) mRNA, microRNA (miRNA), and long noncoding RNA (lncRNA) target genes were annotated using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) to reveal the relevant biological processes.The ceRNA networks were constructed to show distinct regulation, and the mRNAs involved were annotated. The miRNAs involved in the ceRNA networks were screened with the Kaplan-Meier Plotter database to identify dysregulated ceRNAs with prognostic power. Results: In total, 802 DE mRNAs, 441 DE lncRNAs, and 104 DE miRNAs were identified in luminal B BC T-exos, while 1699 DE mRNAs, 590 DE lncRNAs, and 277 DE miRNAs were identified in TNBC T-exos. Gene annotation revealed that the RAS-MAPK pathway was the primary biological process in luminal B BC T-exos, while endocrine system development and growth were the main processes in TNBC T-exos. Survival analysis established seven survival-related lncRNA/miRNA/mRNA regulations in luminal B BC T-exos, and nineteen survival-related lncRNA/miRNA/mRNA regulations in TNBC T-exos. Conclusion: In addition to survival-related ceRNA regulations, ceRNA regulation of RAS-MAPK in luminal B and endocrine system development and growth regulation in TNBC might contribute to the tumorigenesis of BC.

5.
Genes (Basel) ; 13(12)2022 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-36553667

RESUMEN

Understanding the causes of tumorigenesis and progression in triple-receptor negative breast cancer (TNBC) can help the design of novel and personalized therapies and prognostic assessments. Abnormal RNA modification is a recently discovered process in TNBC development. TNBC samples from The Cancer Genome Atlas database were categorized according to the expression level of NAT10, which drives acetylation of cytidine in RNA to N(4)-acetylcytidine (ac4C) and affects mRNA stability. A total of 703 differentially expressed long non-coding RNAs (lncRNAs) were found between high- and low-expressed NAT10 groups in TNBC. Twenty of these lncRNAs were significantly associated with prognosis. Two breast cancer tissues and their paired normal tissues were sequenced at the whole genome level using acetylated RNA immunoprecipitation sequencing (acRIP-seq) technology to identify acetylation features in TNBC, and 180 genes were significantly differentially ac4c acetylated in patients. We also analyzed the genome-wide lncRNA expression profile and constructed a co-expression network, containing 116 ac4C genes and 1080 lncRNAs. Three of these lncRNAs were prognostic risk lncRNAs affected by NAT10 and contained in the network. The corresponding reciprocal pairs were "LINC01614-COL3A1", "OIP5-AS1-USP8", and "RP5-908M14.9-TRIR". These results indicate that RNA ac4c acetylation involves lncRNAs and affects the tumor process and prognosis of TNBC. This will aid the prediction of drug targets and drug sensitivity.


Asunto(s)
ARN Largo no Codificante , Neoplasias de la Mama Triple Negativas , Humanos , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/patología , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Citidina/genética , Citidina/metabolismo , Pronóstico
6.
Front Oncol ; 12: 966511, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36212436

RESUMEN

Background: Cuproptosis, a recently discovered refreshing form of cell death, is distinct from other known mechanisms. As copper participates in cell death, the induction of cancer cell death with copper ionophores may emerge as a new avenue for cancer treatment. However, the role of cuproptosis in tumor microenvironment (TME) cell infiltration remains unknown. Methods: We systematically evaluated the cuproptosis patterns in The Cancer Genome Atlas (TCGA) database in breast cancer (BRCA) samples based on 10 cuproptosis-related genes (CRGs), and correlated these patterns with the prognosis and characteristics of TME cell infiltration. A principal component analysis algorithm was used to construct a cuproptosis score to quantify the cuproptosis pattern in individual tumors. Further, the relationships between the cuproptosis score and transcription background, clinical features, characteristics of TME cell infiltration, drug response, and efficacy of immunotherapy were assessed. Results: Two distinct cuproptosis patterns with distinct prognoses were identified; their TME characteristics were found to be consistent with the immune-excluded and immune-inflamed phenotypes, respectively. The cuproptosis patterns in individual patients were evaluated using the cuproptosis score based on the cuproptosis phenotype-related genes, contributing to distinguishing biological processes, clinical outcome, immune cell infiltration, genetic variation, and drug response. Univariate and multivariate Cox regression analyses verified this score as an independent prognostic predictor in BRCA. A high cuproptosis score, characterized by immune activation, suggests an inflamed tumor and immune-inflamed phenotype with poor survival and a low cuproptosis score, characterized by immune suppression, indicates a non-inflamed tumor and immune-excluded phenotype with better survival. Significant differences were observed in the IC50 between the high and low cuproptosis score groups receiving chemotherapy and targeted therapy drugs. In the two immunotherapy cohorts, patients with a higher cuproptosis score experienced considerable therapeutic advantages and clinical benefits. Conclusions: This study is the first to elucidate the prominent role of cuproptosis in the clinical outcome and the formation of TME diversity and complexity in BRCA. Estimating cuproptosis patterns in tumors could help predict the prognosis and characteristics of TME cell infiltration and guide more effective chemotherapeutic and immunotherapeutic strategies.

7.
Mol Cancer ; 21(1): 176, 2022 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-36071523

RESUMEN

Immunotherapy, especially immune checkpoint inhibitors (ICIs), has revolutionized the treatment of many types of cancer, particularly advanced-stage cancers. Nevertheless, although a subset of patients experiences dramatic and long-term disease regression in response to ICIs, most patients do not benefit from these treatments. Some may even experience cancer progression. Immune escape by tumor cells may be a key reason for this low response rate. N6-methyladenosine (m6A) is the most common type of RNA methylation and has been recognized as a critical regulator of tumors and the immune system. Therefore, m6A modification and related regulators are promising targets for improving the efficacy of tumor immunotherapy. However, the association between m6A modification and tumor immune escape (TIE) has not been comprehensively summarized. Therefore, this review summarizes the existing knowledge regarding m6A modifications involved in TIE and their potential mechanisms of action. Moreover, we provide an overview of currently available agents targeting m6A regulators that have been tested for their elevated effects on TIE. This review establishes the association between m6A modifications and TIE and provides new insights and strategies for maximizing the efficacy of immunotherapy by specifically targeting m6A modifications involved in TIE.


Asunto(s)
Neoplasias , Escape del Tumor , Adenosina/análogos & derivados , Humanos , Inmunoterapia , Neoplasias/genética , Neoplasias/terapia , ARN , Escape del Tumor/genética
8.
J Cardiothorac Surg ; 17(1): 177, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35840969

RESUMEN

BACKGROUND: To assess the feasibility and safety of tubeless video-assisted thoracoscopic sympathectomy (VATS) with a single 5 mm port under nonintubated, intravenous anesthesia with spontaneous ventilation in selected patients with primary palmar hyperhidrosis (PPH). METHODS: Adults (aged between 18 and 60 years) with moderate or severe PPH symptoms were enrolled. Demographic information and clinical data were obtained from 172 consecutive patients undergoing thoracoscopic surgery for PPH from March 2014 to December 2020. The primary outcomes were the rate of complications, including death, and the intraoperative conversion rate to 3-port VATS. The secondary outcomes were the conversion rate to intubated anesthesia during the operation and the surgical duration and pain score of postoperative day 0. RESULTS: In total, 172 patients were included with 88 males and 84 females. The median age was was 25 years (IQR:21-30 years). No mortalities or major morbidities occurred in any patient. The overall median surgical duration was 53 min (IQR:37-72 min). The median length of postoperative hospital stay was one day (IQR:one-one day). The median pain score of POD0 was 2 (IQR:2-2). Intraoperative conversion to 3-port VATS followed by drainage tube insertion occurred in one (0.6%) patient due to extensive pleural adhesions. No patients required conversion to intubated anesthesia during surgery. No postoperative mechanical ventilation was noted in any patient. CONCLUSIONS: For selected patients with PPH, tubeless VATS with a single 5 mm port using spontaneous ventilation anesthesia can be considered a feasible and safe operation. The surgical wound is extremely small and the operation time is shorter than the conventional technique. Trial registration This study was in conformity with the Declaration of Helsinki, and was approved by the National Ethics Committee of the University of the Hong Kong-Shenzhen Hospital (Approval number: [2020]70). We registered the study in the Chinese Clinical Trial Registry (Registration number: ChiCTR2100049063) in 2021.Informed consent was collected from all the participants of this study. URL for this clinical trial registration is: https://www.chictr.org.cn/index.aspx .


Asunto(s)
Anestesia , Hiperhidrosis , Adolescente , Adulto , Femenino , Humanos , Hiperhidrosis/cirugía , Masculino , Persona de Mediana Edad , Dolor , Simpatectomía/métodos , Cirugía Torácica Asistida por Video/métodos , Adulto Joven
9.
Cancers (Basel) ; 14(11)2022 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-35681632

RESUMEN

Methylation alterations of imprinted genes lead to loss of imprinting (LOI). Although studies have explored the mechanism of LOI in breast cancer (BC) development, the association between imprinted gene methylation in peripheral blood and BC risk is largely unknown. We utilized HumanMethylation450 data from TCGA and GEO (n = 1461) to identify the CpG sites of imprinted genes associated with BC risk. Furthermore, we conducted an independent case-control study (n = 1048) to validate DNA methylation of these CpG sites in peripheral blood and BC susceptibility. cg26709929, cg08446215, cg25306939, and cg16057921, which are located at KCNQ1, KCNQ1OT1, and PHLDA2, were discovered to be associated with BC risk. Subsequently, the association between cg26709929, cg26057921, and cg25306939 methylation and BC risk was validated in our inhouse dataset. All 22 CpG sites in the KCNQ1OT1 region were associated with BC risk. Individuals with a hypermethylated KCNQ1OT1 region (>0.474) had a lower BC risk (OR: 0.553, 95% CI: 0.397−0.769). Additionally, the methylation of the KCNQ1OT1 region was not significantly different among B cells, monocytes, and T cells, which was also observed at CpG sites in PHLDA2. In summary, the methylation of KCNQ1, KCNQ1OT1, and PHLDA2 was associated with BC risk, and KCNQ1OT1 methylation could be a potential biomarker for BC risk assessment.

10.
Front Oncol ; 12: 817565, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35223499

RESUMEN

Abnormal DNA methylation contributes to breast cancer (BC). Immune-related genes play crucial roles in BC development and progression. This study aims to investigate the effect of methylation of immune-related genes in peripheral blood leukocytes (PBLs) on BC risk. GSE51032 and GSE104942 datasets were used to identify significantly differentially methylated CpG sites (DMCs) of immune-related genes. A case-control study was conducted using MethylTarget sequencing to validate the relationship between the methylation levels of the screened genes and BC risk. We also evaluated the association between methylation haplotypes of screened genes and BC risk. Moreover, we sorted the blood leukocytes into T cells, B cells, and monocytes to detect the difference of DNA methylation in different cell subtypes. A total of five DMCs were screened from GEO datasets, including cg01760846 (PSMC1), cg07141527 (SPPL3), cg15658543 (CARD11), cg21568368 (PSMB8), and cg24045276 (NCF2). In the case-control study, there were significant associations between methylation of the CpG sites in the five genes and BC risk. Methylation haplotype burdens of PSMC1, CARD11, and PSMB8 were associated with reduced BC risk. Moreover, there were heterogeneities in the methylation levels of the genes in different cell subtypes. In conclusion, methylation of PSMC1, SPPL3, CARD11, PSMB8, and NCF2 in PBLs were associated with BC risk. The five-gene methylation could be the potential biomarkers for predicting BC risk.

11.
Cell Biosci ; 12(1): 22, 2022 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-35216622

RESUMEN

Breast cancer is the most prevalent malignant tumor and a leading cause of mortality among females worldwide. The tumorigenesis and progression of breast cancer involve complex pathophysiological processes, which may be mediated by post-translational modifications (PTMs) of proteins, stimulated by various genes and signaling pathways. Studies into PTMs have long been dominated by the investigation of protein phosphorylation and histone epigenetic modifications. However, with great advances in proteomic techniques, several other PTMs, such as acetylation, glycosylation, sumoylation, methylation, ubiquitination, citrullination, and palmitoylation have been confirmed in breast cancer. Nevertheless, the mechanisms, effects, and inhibitors of these unconventional PTMs (particularly, the non-histone modifications other than phosphorylation) received comparatively little attention. Therefore, in this review, we illustrate the functions of these PTMs and highlight their impact on the oncogenesis and progression of breast cancer. Identification of novel potential therapeutic drugs targeting PTMs and development of biological markers for the detection of breast cancer would be significantly valuable for the efficient selection of therapeutic regimens and prediction of disease prognosis in patients with breast cancer.

12.
J Immunother Cancer ; 10(1)2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34992092

RESUMEN

BACKGROUND: Sentinel lymph nodes (LNs) are regarded as key immune surveillance sites in cancer wherein mature dendritic cells present tumor-derived antigens to prime and activate T cells, which then migrate to the tumor site. However, it is unclear whether the tumor-specific T cells can be elicited within the tumor independent of the sentinel LNs. METHODS: We performed an integrative analysis of gene expression profiles of 65,285 cells and T cell receptor sequences of 15,831 T cells from 5 paired primary breast tumors and sentinel LNs to identify where clonal T cells come from and the characteristics of those clonal T cells. RESULTS: The proportion of clonal T cells was higher in the primary tumors compared with the sentinel LNs, whereas all expanded clones identified in the sentinel LN were also present in the primary tumors. In contrast, 10.91% of the expanded clones in the primary tumors were not found in the sentinel LNs. These novel intratumoral T cell clones were characterized by high tissues retention capacity (CXCR6 +ITGAE+) and a distinct coinhibitory pattern (CD39 +NKG2A+) compared with the expanded T cell clones common to both sites. Furthermore, multiplex immunofluorescence imaging showed the presence of tertiary lymphoid structures (TLS) in the primary breast tumors wherein the activated cytolytic T cells were concentrated, indicating its possible role in eliciting non-sentinel LN-derived T cell clones. CONCLUSIONS: Our study revealed expanded intratumor non-sentinel LN derived T cell clones located in the TLS, which points to the need for exploring the role of TLS in antitumor immunity.


Asunto(s)
Neoplasias de la Mama/inmunología , Linfocitos T CD8-positivos/metabolismo , Ganglios Linfáticos/metabolismo , Metástasis Linfática/patología , Linfocitos T/metabolismo , Femenino , Humanos
13.
Genes Dis ; 9(1): 216-229, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34222571

RESUMEN

Despite the growing knowledge of T cell responses in COVID-19 patients, there is a lack of detailed characterizations for T cell-antigen interactions and T cell functions. Here, with a predicted peptide library from SARS-CoV-2 S and N proteins, we found that specific CD8+ T cell responses were identified in over 75% of COVID-19 convalescent patients (15/20) and an epitope from the N protein, N361-369 (KTFPPTEPK), was the most dominant epitope from our selected peptide library. Importantly, we discovered 2 N361-369-specific T cell receptors (TCRs) with high functional avidity that were independent of the CD8 co-receptor. These TCRs exhibited complementary cross-reactivity to several presently reported N361-369 mutant variants, as to the wild-type epitope. Further, the natural functions of these TCRs in the cytotoxic immunity against SARS-CoV-2 were determined with dendritic cells (DCs) and the lung organoid model. We found that the N361-369 epitope could be normally processed and endogenously presented by these different types of antigen presenting cells, to elicit successful activation and effective cytotoxicity of CD8+ T cells ex vivo. Our study evidenced potential mechanisms of cellular immunity to SARS-CoV-2, and illuminated potential ways of viral clearance in COVID-19 patients. These results indicate that utilizing CD8-independent TCRs against SARS-CoV-2-associated antigens may provide functional superiority that is beneficial for the adoptive cell immunotherapies based on natural or genetically engineered T cells. Additionally, this information is highly relevant for the development of the next-generation vaccines with protections against continuously emerged SARS-CoV-2 mutant strains.

14.
Pharmacol Ther ; 232: 107992, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34606782

RESUMEN

Breast cancer has become a serious threat to women's health. Cancer progression is mainly derived from resistance to apoptosis induced by procedures or therapies. Therefore, new drugs or models that can overcome apoptosis resistance should be identified. Ferroptosis is a recently identified mode of cell death characterized by excess reactive oxygen species-induced lipid peroxidation. Since ferroptosis is distinct from apoptosis, necrosis and autophagy, its induction successfully eliminates cancer cells that are resistant to other modes of cell death. Therefore, ferroptosis may become a new direction around which to design breast cancer treatment. Unfortunately, the complete appearance of ferroptosis in breast cancer has not yet been fully elucidated. Furthermore, whether ferroptosis inducers can be used in combination with traditional anti- breast cancer drugs is still unknown. Moreover, a summary of ferroptosis in breast cancer progression and therapy is currently not available. In this review, we discuss the roles of ferroptosis-associated modulators glutathione, glutathione peroxidase 4, iron, nuclear factor erythroid-2 related factor-2, superoxide dismutases, lipoxygenase and coenzyme Q in breast cancer. Furthermore, we provide evidence that traditional drugs against breast cancer induce ferroptosis, and that ferroptosis inducers eliminate breast cancer cells. Finally, we put forward prospect of using ferroptosis inducers in breast cancer therapy, and predict possible obstacles and corresponding solutions. This review will deepen our understanding of the relationship between ferroptosis and breast cancer, and provide new insights into breast cancer-related therapeutic strategies.


Asunto(s)
Neoplasias de la Mama , Ferroptosis , Apoptosis , Neoplasias de la Mama/metabolismo , Muerte Celular , Femenino , Humanos , Peroxidación de Lípido , Especies Reactivas de Oxígeno/metabolismo
15.
Cancer Cell ; 40(1): 36-52.e9, 2022 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-34822775

RESUMEN

Reinvigoration of antitumor immunity remains an unmet challenge. Our retrospective analyses revealed that cancer patients who took antihistamines during immunotherapy treatment had significantly improved survival. We uncovered that histamine and histamine receptor H1 (HRH1) are frequently increased in the tumor microenvironment and induce T cell dysfunction. Mechanistically, HRH1-activated macrophages polarize toward an M2-like immunosuppressive phenotype with increased expression of the immune checkpoint VISTA, rendering T cells dysfunctional. HRH1 knockout or antihistamine treatment reverted macrophage immunosuppression, revitalized T cell cytotoxic function, and restored immunotherapy response. Allergy, via the histamine-HRH1 axis, facilitated tumor growth and induced immunotherapy resistance in mice and humans. Importantly, cancer patients with low plasma histamine levels had a more than tripled objective response rate to anti-PD-1 treatment compared with patients with high plasma histamine. Altogether, pre-existing allergy or high histamine levels in cancer patients can dampen immunotherapy responses and warrant prospectively exploring antihistamines as adjuvant agents for combinatorial immunotherapy.


Asunto(s)
Histamina/metabolismo , Inmunoterapia , Neoplasias/tratamiento farmacológico , Microambiente Tumoral/efectos de los fármacos , Línea Celular Tumoral/efectos de los fármacos , Humanos , Tolerancia Inmunológica/inmunología , Inmunoterapia/métodos , Macrófagos/inmunología , Neoplasias/inmunología , Receptores Histamínicos/inmunología , Receptores Histamínicos/metabolismo , Microambiente Tumoral/inmunología
16.
Front Cell Dev Biol ; 9: 736935, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34595180

RESUMEN

Histone modifications (HMs) contribute to maintaining genomic stability, transcription, DNA repair, and modulating chromatin in cancer cells. Furthermore, HMs are dynamic and reversible processes that involve interactions between numerous enzymes and molecular components. Aberrant HMs are strongly associated with tumorigenesis and progression of breast cancer (BC), although the specific mechanisms are not completely understood. Moreover, there is no comprehensive overview of abnormal HMs in BC, and BC therapies that target HMs are still in their infancy. Therefore, this review summarizes the existing evidence regarding HMs that are involved in BC and the potential mechanisms that are related to aberrant HMs. Moreover, this review examines the currently available agents and approved drugs that have been tested in pre-clinical and clinical studies to evaluate their effects on HMs. Finally, this review covers the barriers to the clinical application of therapies that target HMs, and possible strategies that could help overcome these barriers and accelerate the use of these therapies to cure patients.

17.
Biomark Res ; 9(1): 71, 2021 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-34563270

RESUMEN

Biological therapy is considered an alternative treatment capable of eliciting the same effects on tumors as surgery, radiotherapy, and chemotherapy. As a major player in biological therapy, oncolytic viruses (OVs) have attracted great attention and achieved good results. Specifically, the successful application of OVs in head and neck cancer, as well as melanoma, promoted its research in triple negative breast cancer (TNBC). TNBC is a high-risk molecular type of breast cancer, characterized by strong invasion, easy recurrence, and metastasis. Due to the absence of estrogen and progesterone receptors, as well as the absence of overexpression or gene amplification of human epidermal growth factor receptor 2 (HER2), endocrine therapy and anti HER-2 targeted therapy have proven ineffective. Although chemotherapy has shown substantial efficacy in some TNBC patients, the occurrence of drug resistance and poor prognosis have prompted the exploration of new and effective treatment methods. The emerging concept of OVs provides a new platform to treat TNBC. Indeed, several studies have confirmed the therapeutic effects of OVs in TNBC. Numerous studies have also investigated the efficacy of OVs in other malignances, including solid tumor clinical trials, thus further demonstrating the promising application of oncolytic virotherapy for TNBC. The primary focus of the current review is the examination of OV mechanisms underlying their antitumor properties, while also summarizing the ongoing progress in OV research regarding TNBC treatment, as well as the various combinatorial strategies comprising OVs and other therapies. We also briefly introduce specific relevant clinical trials and discuss some of the progress in the research of novel OVs for the treatment of other malignancies, thereby affirming the significant therapeutic potential of OVs for the treatment of TNBC, as well as other cancers.

18.
Cell Biosci ; 11(1): 169, 2021 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-34465388

RESUMEN

BACKGROUND: Long noncoding RNA (lncRNA) small nucleolar RNA host gene 1 (SNHG1) plays a positive role in the progression of human malignant tumors. However, the molecular mechanism of SNHG1 remains elusive in breast cancer. RESULTS: LncRNA SNHG1 was upregulated and had a positive relationship with poor prognosis according to bioinformatics analysis in pan-cancer including breast cancer. Silencing SNHG1 inhibited tumorigenesis in breast cancer both in vitro and in vivo. Mechanistically, SNHG1 functioned as a competing endogenous RNA (ceRNA) to promote TERT expression by sponging miR-18b-5p in breast cancer. miR-18b-5p acted as a tumor repressor in breast cancer. Moreover, the combination of SNHG1 knockdown and TERT inhibitor administration showed a synergistic inhibitory effect on breast cancer growth in vivo. Finally, E2F1 as a transcription factor, binding to SNHG1 promoter and enhanced SNHG1 transcription in breast cancer. CONCLUSIONS: Our results provide a comprehensive understanding of the oncogenic mechanism of lncRNA SNHG1 in breast cancer. Importantly, we identified a novel E2F1-SNHG1-miR-18b-5p-TERT axis, which may be a potential therapeutic target for breast cancer. Our results also provided a potential treatment for breast cancer when knockdown SNHG1 and TERT inhibitor administration simultaneously.

19.
NPJ Breast Cancer ; 7(1): 106, 2021 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-34400642

RESUMEN

Mammography is used to detect breast cancer (BC), but its sensitivity is limited, especially for dense breasts. Circulating cell-free DNA (cfDNA) methylation tests is expected to compensate for the deficiency of mammography. We derived a specific panel of markers based on computational analysis of the DNA methylation profiles from The Cancer Genome Atlas (TCGA). Through training (n = 160) and validation set (n = 69), we developed a diagnostic prediction model with 26 markers, which yielded a sensitivity of 89.37% and a specificity of 100% for differentiating malignant disease from normal lesions [AUROC = 0.9816 (95% CI: 96.09-100%), and AUPRC = 0.9704 (95% CI: 94.54-99.46%)]. A simplified 4-marker model including cg23035715, cg16304215, cg20072171, and cg21501525 had a similar diagnostic power [AUROC = 0.9796 (95% CI: 95.56-100%), and AUPRC = 0.9220 (95% CI: 91.02-94.37%)]. We found that a single cfDNA methylation marker, cg23035715, has a high diagnostic power [AUROC = 0.9395 (95% CI: 89.72-99.27%), and AUPRC = 0.9111 (95% CI: 88.45-93.76%)], with a sensitivity of 84.90% and a specificity of 93.88%. In an independent testing dataset (n = 104), the obtained diagnostic prediction model discriminated BC patients from normal controls with high accuracy [AUROC = 0.9449 (95% CI: 90.07-98.91%), and AUPRC = 0.8640 (95% CI: 82.82-89.98%)]. We compared the diagnostic power of cfDNA methylation and mammography. Our model yielded a sensitivity of 94.79% (95% CI: 78.72-97.87%) and a specificity of 98.70% (95% CI: 86.36-100%) for differentiating malignant disease from normal lesions [AUROC = 0.9815 (95% CI: 96.75-99.55%), and AUPRC = 0.9800 (95% CI: 96.6-99.4%)], with better diagnostic power and had better diagnostic power than that of using mammography [AUROC = 0.9315 (95% CI: 89.95-96.34%), and AUPRC = 0.9490 (95% CI: 91.7-98.1%)]. In addition, hypermethylation profiling provided insights into lymph node metastasis stratifications (p < 0.05). In conclusion, we developed and tested a cfDNA methylation model for BC diagnosis with better performance than mammography.

20.
Front Mol Biosci ; 8: 675179, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34179083

RESUMEN

Adoptive immunotherapy using CAR-T cells is a promising curative treatment strategy for hematological malignancies. Current manufacture of clinical-grade CAR-T cells based on lentiviral/retrovirus transfection of T cells followed by anti-CD3/CD28 activation supplemented with IL-2 has been associated with low transfection efficiency and usually based on the use of terminally differentiated effector T cells. Thus, improving the quality and the quantity of CAR-T cells are essential for optimizing the CAR-T cell preparation. In our study, we focus on the role of IL-21 in the γc cytokine conditions for CAR-T cell preparation. We found for the first time that the addition of IL-21 in the CAR-T preparation improved T cell transfection efficiency through the reduction of IFN-γ expression 24-48 h after T cell activation. We also confirmed that IL-21 enhanced the enrichment and expansion of less differentiated CAR-T cells. Finally, we validated that IL-21 improved the CAR-T cell cytotoxicity, which was related to increased secretion of effector cytokines. Together, these findings can be used to optimize the CAR-T cell preparation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...