Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 25(35): 23746-23752, 2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37615166

RESUMEN

The electronic structure and magnetic properties of Li(ZnMn)As with antisite defects have been investigated by using first-principles calculations within the Perdew-Burke-Ernzerhof generalized gradient approximation. The cation antisite defect induced by Zn substitution for As was considered. Mn-3d, As-4p, Zn-4s, and Zn-4p were involved in the formation of d-sp hybrid orbitals, which enhanced the non-localized properties of Mn-3d electrons and provided a channel of Mn(↑)-As(↓)-ZnAs(↓)-Mn(↑) for indirect exchange of electrons between the magnetic ions. The antisite defect of Zn-substituted As belonged to the acceptor doping, rendering the compound p-type characteristics. The existence of the extra free hole carriers regulated the magnetic ordering transition. The ferromagnetic coupling between the Mn magnetic dopants was more favorable in the system with an antisite defect. In this paper, a novel type of dilute magnetic semiconductor with controllable carriers was designed and the mechanism of ferromagnetic coupling was revealed, which provided a theoretical reference for the subsequent studies.

2.
Micromachines (Basel) ; 14(1)2022 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-36677124

RESUMEN

Roundness is one of the most important evaluation indexes of rotary parts. The formation and change of roundness in the machining of parts is essentially the formation and genetic process of profile. Centerless positioning machining is one of the main surface finishing methods of rotary parts. The rounding mechanism of centerless positioning machining determines its unique roundness profile formation and genetic characteristics. How to eliminate the roundness error of centerless positioning machining has become one of the important issues in the research of high-precision rotary part machining. This paper explores the influence of process parameters on the roundness error from the perspective of profile evolution during centerless grinding and electrochemical mechanical machining, with the aim of providing a cross-process collaboration strategy for improving bearing raceway accuracy. Through an experiment of centerless grinding, the influence law and mechanism of process parameters on the profile are discussed. On this basis, electrochemical mechanical machining experiments are designed to explore the variation rules and mechanisms of different profile shapes in the machining process. The cross-process collaboration strategy is studied, and reasonable parameters of centerless grinding and electrochemical mechanical machining are determined. The results show that in the centerless grinding stage, increasing the support plate angle can form a multiple-lobe profile with high frequency within a wide range of process parameters. Electrochemical mechanical machining can effectively smooth the high-frequency profile and appropriately expanding the cathode coverage can improve the roundness error and reduce the requirement of initial accuracy of a multiple-lobe profile workpiece to a certain extent. Therefore, the combined machining technology of "centerless grinding + electrochemical mechanical machining" provides an efficient technical means to realize the precision machining of rotary parts such as bearing raceways.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...