Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
BMC Cancer ; 24(1): 75, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38221626

RESUMEN

BACKGROUND: Obesity-induced abnormal bone marrow microenvironment is one of the important risk element for bone metastasis in prostate cancer (PCa). The present study aimed to determine whether obesity-induced elevation in palmitic acid (PA), which is the most abundant of the free fatty acids (FFAs), increased CCL2 via the GPRs/KLF7 pathway in bone marrow adipocytes (BMA) to facilitate PCa growth and metastasis. METHODS: We constructed a bone-tumor bearing mouse model with obesity through high-fat diet, and observed the tumor formation ability of PCa cells. In vitro, observe the effect of PA on the expression level of CCL2 in BMA through GPRs/KLF7 signaling pathway. After co-culture of BMA and PCa cells, CCK8 assay and transwell experiment were used to detect the changes in biological behavior of PCa cells stimulated by BMA. RESULTS: The BMA distribution in the bone marrow cavity of BALB/c nude mice fed with the high-fat diet (HFD) was evidently higher than that in the mice fed with the normal diet (ND). Moreover, HFD-induced obesity promoted KLF7/CCL2 expression in BMA and PCa cell growth in the bone marrow cavity of the mice. In the vitro experiment, a conditioned medium with increased CCL2 obtained from the BMA cultured with PA (CM-BMA-PA) was used for culturing the PCa cell lines, which evidently enhanced the proliferation, invasion, and migration ability. KLF7 significantly increased the CCL2 expression and secretion levels in BMA by targeting the promoter region of the CCL2 gene. In addition, GPR40/120 engaged in the PA-induced high KLF7/CCL2 levels in BMA to facilitate the malignant progression of PC-3 cells. CONCLUSIONS: PA-activated GPRs/KLF7/CCL2 pathway in BMA facilitates prostate cancer growth and metastasis.


Asunto(s)
Neoplasias Óseas , Neoplasias de la Próstata , Animales , Humanos , Masculino , Ratones , Adipocitos/metabolismo , Médula Ósea/patología , Neoplasias Óseas/patología , Línea Celular Tumoral , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Ratones Desnudos , Obesidad/patología , Ácido Palmítico/farmacología , Neoplasias de la Próstata/patología , Microambiente Tumoral
2.
Biology (Basel) ; 12(6)2023 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-37372118

RESUMEN

Inter-tissue communication (ITC) is critical for maintaining the physiological functions of multiple tissues and is closely related to the onset and development of various complex diseases. Nevertheless, there is no well-organized data resource for known ITC molecules with explicit ITC routes from source tissues to target tissues. To address this issue, in this work, we manually reviewed nearly 190,000 publications and identified 1408 experimentally supported ITC entries in which the ITC molecules, their communication routes, and their functional annotations were included. To facilitate our work, these curated ITC entries were incorporated into a user-friendly database named IntiCom-DB. This database also enables visualization of the expression abundances of ITC proteins and their interaction partners. Finally, bioinformatics analyses on these data revealed common biological characteristics of the ITC molecules. For example, tissue specificity scores of ITC molecules at the protein level are often higher than those at the mRNA level in the target tissues. Moreover, the ITC molecules and their interaction partners are more abundant in both the source tissues and the target tissues. IntiCom-DB is freely available as an online database. As the first comprehensive database of ITC molecules with explicit ITC routes to the best of our knowledge, we hope that IntiCom-DB will benefit future ITC-related studies.

3.
BMC Cancer ; 23(1): 426, 2023 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-37170248

RESUMEN

BACKGROUND: In previous study, we found that the content of medium-chain fatty acid Caprylic Acid (FFA C8:0) may be an important risk factor of obesity induced prostate cancer (PCa). However, the relationship between FFA C8:0 and PCa has not been reported. In this study, we explored whether the FFA C8:0 can promotes the progression of PCa by up-regulating Krüppel-like factor 7 (KLF7). METHODS: We collected tissues from PCa patients and Benign Prostate Hyperplasia (BPH), constructed a primary-tumor bearing mouse model with obesity through high-fat diet, and observed the tumor formation ability of PCa cells. In vitro, CCK8 assay, plate cloning, Transwell and scratch experiment were used to detect the changes in biological behavior of PCa cells stimulated by FFA C8:0. RESULTS: First, we found that the expression level of KLF7 is higher in PCa tissues of patients, and the expression of KLF7 is positively correlated with tumour-promoting gene IL-6, while it is negative correlated with another tumour-suppressor gene p21. Then, this study found that PCa cells were more likely to form tumors in diet induced obese mice. Compared with the normal diet group (ND), the expression levels of KLF7 in tumor tissues in high-fat diet group (HFD) were higher. Futhermore, we verified that high concentrations of FFA C8:0 can promote the biological behavior of PCa cells by activating KLF7/IL-6/p21 signaling pathway, which is mediated by the GPR84. CONCLUSIONS: Our research may provide a potential target for clinical prevention and treatment of PCa which induced by obesity.


Asunto(s)
Interleucina-6 , Neoplasias de la Próstata , Humanos , Masculino , Ratones , Animales , Línea Celular Tumoral , Neoplasias de la Próstata/patología , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Receptores Acoplados a Proteínas G/genética , Obesidad/complicaciones
4.
Cancer Sci ; 114(4): 1507-1518, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36445107

RESUMEN

Obesity is a high-risk factor in the development of endometrial cancer (EC). Our previous study observed that miR-548ag was significantly overexpressed in the sera of obese individuals. Here, we report the function of miR-548ag and its mechanism in promoting the obesity-related progression of EC. The content of miR-548ag was increased in the serum of obese EC individuals. Bioinformatics analysis indicated that the survival rate of EC patients with a higher expression of miR-548ag was significantly reduced. The Mps One Binder Kinase Activator 1B (MOB1B, the core member of the Hippo signaling pathway) is a direct target gene of miR-548ag, which is inversely correlated with the expression of miR-548ag. The overexpression of miR-548ag enhances the proliferation, invasion, and migration, and inhibits apoptosis by downregulating the expression of MOB1B, leading to the deactivation of the Hippo pathway in EC cell lines and contributing to tumor progression in vivo. Our study has established that miR-548ag functions as an oncogene by suppressing MOB1B in the development of obesity-related EC.


Asunto(s)
Neoplasias Endometriales , MicroARNs , Femenino , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Proliferación Celular/genética , Oncogenes/genética , Neoplasias Endometriales/metabolismo , Obesidad/complicaciones , Obesidad/genética , Línea Celular Tumoral , Movimiento Celular/genética , Regulación Neoplásica de la Expresión Génica
5.
J Biochem Mol Toxicol ; 36(8): e23097, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35532220

RESUMEN

Hepatic fibrosis is an important early stage in the evolution of liver cirrhosis, and specific medicine and therapeutic measures are unavailable to date. Hepatic stellate cells (HSCs) are the main cells involved in the formation of hepatic fibrosis, and induction of the apoptosis of HSCs is an important strategy for the treatment of hepatic fibrosis. Diallyl trisulfide (DATS) is a natural product and is the main active ingredient in garlic. However, the exact molecular mechanisms underlying HSC apoptosis induced by DATS are not well understood. This study aimed to analyze the efficiency and mechanism of DATS in hepatic fibrosis. Different concentrations (25, 50, 100, and 200 µM) of DATS were used to treat HSCs. Changes in cell morphology and formation of apoptotic bodies were observed under an inverted microscope and an electric microscope. Bcl-2 signaling involving Bax, Caspase-3, Caspase-6, Caspase-8, Caspase-9, p53, Apaf-1, and Cyto-c in fibrosis were examined, which is a critical step in the evaluation of antihepatic fibrosis agents. We also evaluated the effect of DATS on the cellular morphology of HSCs and apoptosis-related factors under different Bcl-2 expression states. Our results suggest that DATS regulates hepatic fibrosis by blocking the Bcl-2 signaling pathway and upregulating the Bax/Bcl-2 ratio.


Asunto(s)
Apoptosis , Células Estrelladas Hepáticas , Compuestos Alílicos , Fibrosis , Humanos , Cirrosis Hepática/tratamiento farmacológico , Cirrosis Hepática/metabolismo , Sulfuros , Proteína X Asociada a bcl-2/metabolismo
6.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 37(9): 781-787, 2021 Sep.
Artículo en Chino | MEDLINE | ID: mdl-34533124

RESUMEN

Objective To investigate the effect of RS102895, a specific C-C motif chemokine receptor 2 (CCR2) antagonist, on the biological behavior of prostate cancer (PCa) cells with different degrees of malignancy. Methods Non-androgen-dependent prostate cancer cells PC-3 and androgen-dependent prostate cancer cells 22RV1 were cultured in vitro. A control group, a recombinant C-C motif chemokine ligand 2 (rCCL2) treatment group, and a rCCL2 combined with RS102895 treatment group were established. Cell proliferation ability was detected by CCK-8 assay, cell invasion and migration abilities were detected by TranswellTM assay, mRNA expressions of cell antigen KI-67 (ki67) and matrix metalloproteinase 2 (MMP2) were detected by real-time quantitative PCR, and protein expression levels of ki67 and MMP2 were detected by Western blotting. Results The proliferation, invasion, and migration abilities of PC-3 cells were significantly enhanced by rCCL2, and the proliferation ability of 22RV1 cells was significantly increased as well. Meanwhile, the mRNA and protein expression levels of ki67 and MMP2 in PC-3 cells were significantly up-regulated by rCCL2. After RS102895 treatment, the above effects of rCCL2 were reversed. Conclusion RS102895 can inhibit the proliferation, invasion, and migration of PC-3 prostate cancer cells by specifically blocking the CCL2/CCR2 pathway and down-regulating the expressions of ki67 and MMP2.


Asunto(s)
Quimiocina CCL2 , Neoplasias de la Próstata , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Quimiocina CCL2/genética , Humanos , Masculino , Metaloproteinasa 2 de la Matriz/genética , Invasividad Neoplásica , Células PC-3 , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/genética , Receptores CCR2/genética , Receptores de Quimiocina
7.
J Diabetes Investig ; 12(6): 950-962, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33068491

RESUMEN

AIMS/INTRODUCTION: Type 2 diabetes mellitus is closely linked to increased levels of free fatty acids (FFAs) in obese individuals, although which FFA is most associated with type 2 diabetes mellitus is unclear. This study aimed to identify the specific FFAs that best predict the occurrence of type 2 diabetes mellitus in obese individuals, and assess their potential application value. MATERIALS AND METHODS: Participants were divided into three groups: a normal weight group (n = 20), an obese group (n = 10) and a type 2 diabetes mellitus group (n = 10). FFAs in serum samples were determined by ultra-high-pressure liquid chromatography-mass spectrometry, and orthogonal partial least squares discriminant analysis models were used to study the FFA profile among the three groups. RESULTS: Compared with the normal weight group, 14 FFAs (C8:0/10:0/14:0/16:1/18:1/20:2/ 20:3 /20:4/ 20:5/ 22:6/7:0/9:0/11:0 and C13:0) were significantly increased in the obese group, and nine FFAs (C14:0, C18:1, C20:1, C 18:2, C20:2, C20:3, C18:3, C20:5 and C22:6) were significantly increased in the type 2 diabetes mellitus group. Subsequently, the Venn diagram results showed that six FFAs (C14:0, C18:1, C20:2, C20:3, C20:5 and C22:6) were significantly increased in both the obese and type 2 diabetes mellitus groups. Among these six, C22:6 was finally identified as an independent risk factor for type 2 diabetes mellitus, and had a great potential to predict the susceptibility to type 2 diabetes mellitus (area under the curve 0.803). CONCLUSIONS: C22:6 can be an independent risk factor for type 2 diabetes mellitus, and it has a great potential to predict the susceptibility to type 2 diabetes mellitus.


Asunto(s)
Diabetes Mellitus Tipo 2/etiología , Susceptibilidad a Enfermedades/sangre , Ácidos Grasos no Esterificados/sangre , Obesidad/sangre , Adulto , Biomarcadores/sangre , Femenino , Cromatografía de Gases y Espectrometría de Masas , Humanos , Masculino , Persona de Mediana Edad , Obesidad/complicaciones , Valor Predictivo de las Pruebas , Factores de Riesgo
8.
J Diabetes Investig ; 12(2): 165-175, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32579760

RESUMEN

AIMS/INTRODUCTION: Microribonucleic acid-155 (microRNA155) and microRNA29 are reported to inhibit glucose metabolism in some cell and animal models, but no evidence from susceptible populations that examines the relationship between microRNA155 or microRNA29 and type 2 diabetes mellitus currently exists. Furthermore, target genes regulated by microRNA155 and microRNA29 that affect glucose and lipid metabolism remain unknown. MATERIALS AND METHODS: Human participants were divided into normal weight (n = 72), obesity (n = 120) and type 2 diabetes (n = 59) groups. The contents of microRNA155 and microRNA29 abundance in serum were measured, and candidate genes potentially related to glucose and lipid metabolism targeted by either microRNA155 or microRNA29 were screened. Overexpression of microRNA155 and microRNA29 in HepG2 cells was used to verify candidate gene expression, and measure the effects on glucose and lipid metabolism. RESULTS: Serum levels of microRNA155 and microRNA29 show a significant increase in individuals with obesity and type 2 diabetes compared with normal weight individuals. Identified target genes for microRNA155 were MAPK14, MAP3K10, DUSP14 and PRKAR2B. Identified target genes for microRNA29 were PEX11A and FADS1. Overexpression of microRNA155 or microRNA29 in HepG2 cells was found to downregulate the expression of identified target genes, and result in inhibition of triglyceride synthesis and glucose incorporation. CONCLUSIONS: MicroRNA155 and microRNA29 were significantly higher in type 2 diabetes patients compared with the control patients, their levels were also positively correlated with fasting plasma glucose levels, and over-expression of microRNA155 or microRNA29 were found to downregulate glucose and lipid metabolism target genes, and reduce lipid synthesis and glucose incorporation in HepG2 cells.


Asunto(s)
Biomarcadores/análisis , Diabetes Mellitus Tipo 2/patología , MicroARNs/genética , Glucemia/análisis , Estudios de Casos y Controles , delta-5 Desaturasa de Ácido Graso , Diabetes Mellitus Tipo 2/epidemiología , Diabetes Mellitus Tipo 2/genética , Estudios de Seguimiento , Células Hep G2 , Humanos , Pronóstico
9.
Cancer Sci ; 111(10): 3600-3612, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32770813

RESUMEN

Prostate cancer (PCa) continues to be the most common, noncutaneous cancer in men. Bone is the most frequent site of PCa metastases, and up to 90% of patients with advanced PCa develop bone metastases. An altered bone marrow microenvironment, induced by obesity, is a significant mediator for the bone tropism of PCa. However, the specific molecular mechanisms by which obesity causes changes in the bone marrow microenvironment, leading to PCa bone metastasis, are not fully understood. Our results demonstrate that a high-fat diet (HFD) leads to dyslipidemia and changes in bone marrow of nude mice: an increase in the area and number of adipocytes and a reduction in the area and number of osteoblasts. Moreover, a HFD promoted cyclooxygenase 2 (COX2) expression and inhibited osteoprotegerin (OPG) expression in the bone microenvironment. Additionally, the total level of free fatty acids (FFAs) and caprylic acid (C8:0) was significantly higher in PCa patients with bone metastases. In vitro, caprylic acid (C8:0) promoted bone mesenchymal stem cell (MSC)-derived adipocytic differentiation, COX2 expression, and prostaglandin E2 (PGE2) secretion, whereas osteoblastic differentiation and OPG expression were reduced. Furthermore, caprylic acid (C8:0)-treated adipocytes promoted the invasion and migration of PCa cells. Taken together, our findings suggest caprylic acid (C8:0) promotes bone metastasis of PCa by dysregulated adipo-osteogenic balance of bone marrow.


Asunto(s)
Adipocitos/efectos de los fármacos , Adipocitos/patología , Médula Ósea/efectos de los fármacos , Médula Ósea/patología , Neoplasias Óseas/patología , Caprilatos/farmacología , Neoplasias de la Próstata/patología , Adipocitos/metabolismo , Animales , Médula Ósea/metabolismo , Neoplasias Óseas/metabolismo , Huesos/efectos de los fármacos , Huesos/metabolismo , Huesos/patología , Diferenciación Celular/efectos de los fármacos , Línea Celular , Línea Celular Tumoral , Ciclooxigenasa 2/metabolismo , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Osteoblastos/efectos de los fármacos , Osteoblastos/metabolismo , Osteoblastos/patología , Células PC-3 , Neoplasias de la Próstata/metabolismo , Microambiente Tumoral/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...