Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Cell Proteomics ; 23(6): 100770, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38641226

RESUMEN

Inhalation of crystalline silica dust induces incurable lung damage, silicosis, and pulmonary fibrosis. However, the mechanisms of the lung injury remain poorly understood, with limited therapeutic options aside from lung transplantation. Posttranslational modifications can regulate the function of proteins and play an important role in studying disease mechanisms. To investigate changes in posttranslational modifications of proteins in silicosis, combined quantitative proteome, acetylome, and succinylome analyses were performed with lung tissues from silica-injured and healthy mice using liquid chromatography-mass spectrometry. Combined analysis was applied to the three omics datasets to construct a protein landscape. The acetylation and succinylation of the key transcription factor STAT1 were found to play important roles in the silica-induced pathophysiological changes. Modulating the acetylation level of STAT1 with geranylgeranylacetone effectively inhibited the progression of silicosis. This report revealed a comprehensive landscape of posttranslational modifications in silica-injured mouse and presented a novel therapeutic strategy targeting the posttranslational level for silica-induced lung diseases.

2.
Acta Pharm Sin B ; 14(4): 1726-1741, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38572107

RESUMEN

Pulmonary hypertension (PH) is a fatal disorder characterized by pulmonary vascular remodeling and obstruction. The phosphodiesterase 4 (PDE4) family hydrolyzes cyclic AMP (cAMP) and is comprised of four subtypes (PDE4A-D). Previous studies have shown the beneficial effects of pan-PDE4 inhibitors in rodent PH; however, this class of drugs is associated with side effects owing to the broad inhibition of all four PDE4 isozymes. Here, we demonstrate that PDE4B is the predominant PDE isozyme in lungs and that it was upregulated in rodent and human PH lung tissues. We also confirmed that PDE4B is mainly expressed in the lung endothelial cells (ECs). Evaluation of PH in Pde4b wild type and knockout mice confirmed that Pde4b is important for the vascular remodeling associated with PH. In vivo EC lineage tracing demonstrated that Pde4b induces PH development by driving endothelial-to-mesenchymal transition (EndMT), and mechanistic studies showed that Pde4b regulates EndMT by antagonizing the cAMP-dependent PKA-CREB-BMPRII axis. Finally, treating PH rats with a PDE4B-specific inhibitor validated that PDE4B inhibition has a significant pharmacological effect in the alleviation of PH. Collectively, our findings indicate a critical role for PDE4B in EndMT and PH, prompting further studies of PDE4B-specific inhibitors as a therapeutic strategy for PH.

3.
Circulation ; 149(17): 1354-1371, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38314588

RESUMEN

BACKGROUND: Pulmonary hypertension (PH) is a progressive cardiopulmonary disease with a high mortality rate. Although growing evidence has revealed the importance of dysregulated energetic metabolism in the pathogenesis of PH, the underlying cellular and molecular mechanisms are not fully understood. In this study, we focused on ME1 (malic enzyme 1), a key enzyme linking glycolysis to the tricarboxylic acid cycle. We aimed to determine the role and mechanistic action of ME1 in PH. METHODS: Global and endothelial-specific ME1 knockout mice were used to investigate the role of ME1 in hypoxia- and SU5416/hypoxia (SuHx)-induced PH. Small hairpin RNA and ME1 enzymatic inhibitor (ME1*) were used to study the mechanism of ME1 in pulmonary artery endothelial cells. Downstream key metabolic pathways and mediators of ME1 were identified by metabolomics analysis in vivo and ME1-mediated energetic alterations were examined by Seahorse metabolic analysis in vitro. The pharmacological effect of ME1* on PH treatment was evaluated in PH animal models induced by SuHx. RESULTS: We found that ME1 protein level and enzymatic activity were highly elevated in lung tissues of patients and mice with PH, primarily in vascular endothelial cells. Global knockout of ME1 protected mice from developing hypoxia- or SuHx-induced PH. Endothelial-specific ME1 deletion similarly attenuated pulmonary vascular remodeling and PH development in mice, suggesting a critical role of endothelial ME1 in PH. Mechanistic studies revealed that ME1 inhibition promoted downstream adenosine production and activated A2AR-mediated adenosine signaling, which leads to an increase in nitric oxide generation and a decrease in proinflammatory molecule expression in endothelial cells. ME1 inhibition activated adenosine production in an ATP-dependent manner through regulating malate-aspartate NADH (nicotinamide adenine dinucleotide plus hydrogen) shuttle and thereby balancing oxidative phosphorylation and glycolysis. Pharmacological inactivation of ME1 attenuated the progression of PH in both preventive and therapeutic settings by promoting adenosine production in vivo. CONCLUSIONS: Our findings indicate that ME1 upregulation in endothelial cells plays a causative role in PH development by negatively regulating adenosine production and subsequently dysregulating endothelial functions. Our findings also suggest that ME1 may represent as a novel pharmacological target for upregulating protective adenosine signaling in PH therapy.

4.
Am J Respir Cell Mol Biol ; 68(2): 213-227, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36227848

RESUMEN

Progressive fibrosing interstitial lung diseases (PF-ILDs) result in high mortality and lack effective therapies. The pathogenesis of PF-ILDs involves macrophages driving inflammation and irreversible fibrosis. Fc-γ receptors (FcγRs) regulate macrophages and inflammation, but their roles in PF-ILDs remain unclear. We characterized the expression of FcγRs and found upregulated FcγRIIB in human and mouse lungs after exposure to silica. FcγRIIB deficiency aggravated lung dysfunction, inflammation, and fibrosis in silica-exposed mice. Using single-cell transcriptomics and in vitro experiments, FcγRIIB was found in alveolar macrophages, where it regulated the expression of fibrosis-related genes Spp1 and Ctss. In mice with macrophage-specific overexpression of FcγRIIB and in mice treated with adenovirus by intratracheal instillation to upregulate FcγRIIB, silica-induced functional and histological changes were ameliorated. Our data from three genetic models and a therapeutic model suggest that FcγRIIB plays a protective role that can be enhanced by adenoviral overexpression, representing a potential therapeutic strategy for PF-ILDs.


Asunto(s)
Enfermedades Pulmonares Intersticiales , Neumonía , Humanos , Animales , Ratones , Adenoviridae/genética , Adenoviridae/metabolismo , Neumonía/genética , Inflamación/genética , Inflamación/metabolismo , Receptores de IgG/genética , Receptores de IgG/metabolismo , Fibrosis , Dióxido de Silicio
5.
Comput Biol Med ; 151(Pt A): 106187, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36327882

RESUMEN

Blood leukocyte counts (e.g., eosinophil count) are important biomarkers for the onset, classification, and exacerbation of chronic obstructive pulmonary disease (COPD). The causal relationships between them are necessary for the development of COPD treatment strategy, but remain unclear. Here, we implement two-sample bi-directional univariable Mendelian Randomization (MR) and multivariable MR to investigate the causal relationships. Univariable MR find that elevated blood eosinophil count significantly increases the risk of COPD (odds ratio (OR) = 1.22, 95% confidence interval (CI): 1.14-1.30, P = 1.54 × 10-09) and COPD-related hospitalization (OR = 1.44, 95% CI: 1.15-1.80, P = 1.36 × 10-03). Besides, it also significantly decreases the ratio of forced expiratory volume in the first second over forced vital capacity (FEV1/FVC ratio) (OR = 0.942, 95% CI: 0.914-0.971, P = 1.02 × 10-04). These findings are fully supported by multivariate MR results. Interestingly, univariable MR reveals a weak causal relationship between elevated blood eosinophil count and COPD risk in younger people (<65 years) (OR = 1.39, 95% CI: 1.10-1.75, P = 5.52 × 10-03), but not older individuals (OR = 1.20, 95% CI: 0.926-1.55, P = 0.17). Finally, reverse univariable MR reveals the onset of COPD and the decreased FEV1/FVC ratio both lead to increased blood neutrophil count (OR = 1.03, 95% CI: 1.01-1.05, P = 3.40 × 10-03 and OR = 0.947, 95% CI: 0.91-0.986, P = 8.75 × 10-03 respectively). In summary, this MR study demonstrates that high blood eosinophil count is an independent causal mediator of COPD risk, FEV1/FVC decline, and COPD-related hospitalization. The increase in neutrophil count is induced by COPD onset or FEV1/FVC decline. This suggests eosinophil, but not neutrophil, may be used as a therapeutic target for preventing the onset and exacerbation of COPD and FEV1/FVC decline. Therefore, a non-neutrophil-targeted therapeutic strategy for neutrophilic COPD is required in the future.


Asunto(s)
Análisis de la Aleatorización Mendeliana , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Enfermedad Pulmonar Obstructiva Crónica/genética , Volumen Espiratorio Forzado , Capacidad Vital , Recuento de Leucocitos
6.
Ecotoxicol Environ Saf ; 244: 114043, 2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-36087468

RESUMEN

Silicosis is one of the most important occupational diseases worldwide, caused by inhalation of silica particles or free crystalline silicon dioxide. As a disease with high mortality, it has no effective treatment and new therapeutic targets are urgently needed. Recent studies have identified FCER1A, encoding α-subunit of the immunoglobulin E (IgE) receptor FcεRI, as a candidate gene involved in the biological pathways leading to respiratory symptoms. FcεRI is known to be important in allergic asthma, but its role in silicosis remains unclear. In this study, serum IgE concentrations and FcεRI expression were assessed in pneumoconiosis patients and silica-exposed mice. The role of FcεRI was explored in a silica-induced mouse model using wild-type and FcεRI-deficient mice. The results showed that serum IgE concentrations were significantly elevated in both pneumoconiosis patients and mice exposed to silica compared with controls. The mRNA and protein expression of FcεRI were also significantly increased in the lung tissue of patients and silica-exposed mice. FcεRI deficiency significantly attenuated the changes in lung function caused by silica exposure. Silica-induced elevations of IL-1ß, IL-6, and TNF-α were significantly attenuated in the lung tissue and bronchoalveolar lavage fluid (BALF) of FcεRI-deficient mice compared with wild-type controls. Additionally, FcεRI-deficient mice showed a significantly lower score of pulmonary fibrosis than wild-type mice following exposure to silica, with significantly lower hydroxyproline content and expression of fibrotic genes Col1a1 and Fn1. Immunofluorescent staining suggested FcεRI mainly on mast cells. Mast cell degranulation took place after silica exposure, as shown by increased serum histamine levels and ß-hexosaminidase activity, which were significantly reduced in FcεRI-deficient mice compared with wild-type controls. Together, these data showed that FcεRI deficiency had a significant protective effect against silica-induced pulmonary inflammation and fibrosis. Our findings provide new insights into the pathophysiological mechanisms of silica-induced pulmonary fibrosis and a potential target for the treatment of silicosis.


Asunto(s)
Neumonía , Fibrosis Pulmonar , Silicosis , Animales , Fibrosis , Histamina/metabolismo , Histamina/toxicidad , Hidroxiprolina/metabolismo , Hidroxiprolina/farmacología , Hidroxiprolina/uso terapéutico , Inmunoglobulina E , Interleucina-6/metabolismo , Pulmón , Ratones , Ratones Endogámicos C57BL , Neumonía/patología , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/genética , ARN Mensajero/metabolismo , Receptores de IgE/genética , Receptores de IgE/metabolismo , Receptores de IgE/uso terapéutico , Dióxido de Silicio/toxicidad , Silicosis/genética , Silicosis/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , beta-N-Acetilhexosaminidasas/metabolismo , beta-N-Acetilhexosaminidasas/farmacología , beta-N-Acetilhexosaminidasas/uso terapéutico
7.
Exp Mol Med ; 54(8): 1201-1213, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35999453

RESUMEN

Abdominal aortic aneurysm (AAA) is a permanent expansion of the abdominal aorta that has a high mortality but limited treatment options. Phosphodiesterase (PDE) 4 family members are cAMP-specific hydrolyzing enzymes and have four isoforms (PDE4A-PDE4D). Several pan-PDE4 inhibitors are used clinically. However, the regulation and function of PDE4 in AAA remain largely unknown. Herein, we showed that PDE4D expression is upregulated in human and angiotensin II-induced mouse AAA tissues using RT-PCR, western blotting, and immunohistochemical staining. Furthermore, smooth muscle cell (SMC)-specific Pde4d knockout mice showed significantly reduced vascular destabilization and AAA development in an experimental AAA model. The PDE4 inhibitor rolipram also suppressed vascular pathogenesis and AAA formation in mice. In addition, PDE4D deficiency inhibited caspase 3 cleavage and SMC apoptosis in vivo and in vitro, as shown by bulk RNA-seq, western blotting, flow cytometry and TUNEL staining. Mechanistic studies revealed that PDE4D promotes apoptosis by suppressing the activation of cAMP-activated protein kinase A (PKA) instead of the exchange protein directly activated by cAMP (Epac). Additionally, the phosphorylation of BCL2-antagonist of cell death (Bad) was reversed by PDE4D siRNA in vitro, which indicates that PDE4D regulates SMC apoptosis via the cAMP-PKA-pBad axis. Overall, these findings indicate that PDE4D upregulation in SMCs plays a causative role in AAA development and suggest that pharmacological inhibition of PDE4 may represent a potential therapeutic strategy.


Asunto(s)
Angiotensina II , Aneurisma de la Aorta Abdominal , Angiotensina II/efectos adversos , Animales , Aneurisma de la Aorta Abdominal/inducido químicamente , Aneurisma de la Aorta Abdominal/genética , Aneurisma de la Aorta Abdominal/metabolismo , Apoptosis , Proteínas Quinasas Dependientes de AMP Cíclico , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/efectos adversos , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/genética , Humanos , Ratones , Ratones Noqueados , Miocitos del Músculo Liso/metabolismo
8.
Acta Pharm Sin B ; 12(3): 1213-1224, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35530143

RESUMEN

Silicosis is a leading cause of occupational disease-related morbidity and mortality worldwide, but the molecular basis underlying its development remains unclear. An accumulating body of evidence supports gasdermin D (GSDMD)-mediated pyroptosis as a key component in the development of various pulmonary diseases. However, there is little experimental evidence connecting silicosis and GSDMD-driven pyroptosis. In this work, we investigated the role of GSDMD-mediated pyroptosis in silicosis. Single-cell RNA sequencing of healthy and silicosis human and murine lung tissues indicated that GSDMD-induced pyroptosis in macrophages was relevant to silicosis progression. Through microscopy we then observed morphological alterations of pyroptosis in macrophages treated with silica. Measurement of interleukin-1ß release, lactic dehydrogenase activity, and real-time propidium iodide staining further revealed that silica induced pyroptosis of macrophages. Additionally, we verified that both canonical (caspase-1-mediated) and non-canonical (caspase-4/5/11-mediated) signaling pathways mediated silica-induced pyroptosis activation, in vivo and in vitro. Notably, Gsdmd knockout mice exhibited dramatically alleviated silicosis phenotypes, which highlighted the pivotal role of pyroptosis in this disease. Taken together, our results demonstrated that macrophages underwent GSDMD-dependent pyroptosis in silicosis and inhibition of this process could serve as a viable clinical strategy for mitigating silicosis.

9.
Signal Transduct Target Ther ; 7(1): 157, 2022 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-35551173

RESUMEN

Silicosis is the most prevalent and fatal occupational disease with no effective therapeutics, and currently used drugs cannot reverse the disease progress. Worse still, there are still challenges to be addressed to fully decipher the intricated pathogenesis. Thus, specifying the essential mechanisms and targets in silicosis progression then exploring anti-silicosis pharmacuticals are desperately needed. In this work, multi-omics atlas was constructed to depict the pivotal abnormalities of silicosis and develop targeted agents. By utilizing an unbiased and time-resolved analysis of the transcriptome, proteome and phosphoproteome of a silicosis mouse model, we have verified the significant differences in transcript, protein, kinase activity and signaling pathway level during silicosis progression, in which the importance of essential biological processes such as macrophage activation, chemotaxis, immune cell recruitment and chronic inflammation were emphasized. Notably, the phosphorylation of EGFR (p-EGFR) and SYK (p-SYK) were identified as potential therapeutic targets in the progression of silicosis. To inhibit and validate these targets, we tested fostamatinib (targeting SYK) and Gefitinib (targeting EGFR), and both drugs effectively ameliorated pulmonary dysfunction and inhibited the progression of inflammation and fibrosis. Overall, our drug discovery with multi-omics approach provides novel and viable therapeutic strategies for the treatment of silicosis.


Asunto(s)
Fibrosis Pulmonar , Silicosis , Aminopiridinas , Animales , Receptores ErbB , Gefitinib/farmacología , Inflamación , Ratones , Morfolinas , Fibrosis Pulmonar/patología , Piridinas/uso terapéutico , Pirimidinas , Silicosis/tratamiento farmacológico , Silicosis/genética , Silicosis/metabolismo
11.
Cardiovasc Res ; 118(14): 2985-2999, 2022 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-35048969

RESUMEN

AIMS: Hypertension is the major cause of cardiovascular diseases and global mortality. Immunoglobulin E (IgE), which plays crucial roles in allergic diseases, has been implicated in the pathogenesis of vascular and cardiac remodelling via its receptor (FcεR1). In this study, we aimed to reveal the role of IgE and FcεR1 in hypertension. METHODS AND RESULTS: Herein, we reported that IgE levels were significantly increased in hypertensive patients as well as in hypertensive mice induced by angiotensin II (Ang II). Ang II-induced vascular remodelling and hypertension were significantly alleviated in FcεR1 genetic knockout mice or in mice treated with anti-IgE monoclonal antibody. Similarly, treatment with omalizumab (a clinical IgE antagonist) also markedly inhibited Ang II-induced hypertension. Furthermore, the cellular contribution of IgE-FcεR1 in hypertension was evaluated in mice with FcεR1 conditional knockout in mast cell (MC), smooth muscle cell (SMC), or endothelial cell (EC). Our data revealed that IgE-mediated hypertension is largely dependent on FcεR1 in MCs but not SMCs and ECs. Finally, RNA-seq and signalling pathway analyses of mouse bone marrow-derived MCs suggested that interleukin 6 (IL-6) is one of critical mediators in IgE-mediated hypertension. IL-6 derived from IgE-stimulated MCs promoted reactive oxygen species production and decreased the levels of phosphorylated endothelial nitric oxide synthase in ECs, leading to endothelial dysfunction. CONCLUSION: Our findings reveal that IgE contributes to the pathogenesis of hypertension, at least partially through activating the IgE-FcεR1 signalling in MCs. Thus, IgE may represent a new therapeutic target for IgE-mediated hypertension.


Asunto(s)
Hipertensión , Mastocitos , Ratones , Animales , Inmunoglobulina E/genética , Inmunoglobulina E/metabolismo , Receptores de IgE/genética , Receptores de IgE/metabolismo , Interleucina-6/metabolismo , Ratones Noqueados , Hipertensión/metabolismo
12.
Acta Pharmacol Sin ; 43(4): 908-918, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34316030

RESUMEN

Silicosis is a global occupational disease characterized by lung dysfunction, pulmonary inflammation, and fibrosis, for which there is a lack of effective drugs. Pirfenidone has been shown to exert anti-inflammatory and anti-fibrotic properties in the lung. However, whether and how pirfenidone is effective against silicosis remains unknown. Here, we evaluated the efficacy of pirfenidone in the treatment of early and advanced silicosis in an experimental mouse model and explored its potential pharmacological mechanisms. We found that pirfenidone alleviated silica-induced lung dysfunction, secretion of inflammatory cytokines (TNF-α, IL-1ß, IL-6) and deposition of fibrotic proteins (collagen I and fibronectin) in both early and advanced silicosis models. Moreover, we observed that both 100 and 200 mg/kg pirfenidone can effectively treat early-stage silicosis, while 400 mg/kg was recommended for advanced silicosis. Mechanistically, antibody array and bioinformatic analysis showed that the pathways related to IL-17 secretion, including JAK-STAT pathway, Th17 differentiation, and IL-17 pathway, might be involved in the treatment of silicosis by pirfenidone. Further in vivo experiments confirmed that pirfenidone reduced the production of IL-17A induced by silica exposure via inhibiting STAT3 phosphorylation. Neutralizing IL-17A by anti-IL-17A antibody improved lung function and reduced pulmonary inflammation and fibrosis in silicosis animals. Collectively, our study has demonstrated that pirfenidone effectively ameliorated silica-induced lung dysfunction, pulmonary inflammation and fibrosis in mouse models by inhibiting the secretion of IL-17A.


Asunto(s)
Interleucina-17 , Neumonía , Animales , Modelos Animales de Enfermedad , Fibrosis , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Interleucina-17/metabolismo , Quinasas Janus/metabolismo , Quinasas Janus/uso terapéutico , Pulmón/metabolismo , Ratones , Ratones Endogámicos C57BL , Neumonía/inducido químicamente , Neumonía/tratamiento farmacológico , Neumonía/metabolismo , Piridonas , Factores de Transcripción STAT/metabolismo , Factores de Transcripción STAT/uso terapéutico , Transducción de Señal , Dióxido de Silicio/toxicidad
13.
Front Genet ; 12: 652901, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34149803

RESUMEN

Silicosis is a fatal occupational lung disease which currently has no effective clinical cure. Recent studies examining the underlying mechanism of silicosis have primarily examined experimental models, which may not perfectly reflect the nature of human silicosis progression. A comprehensive profiling of the molecular changes in human silicosis lungs is urgently needed. Here, we conducted RNA sequencing (RNA-seq) on the lung tissues of 10 silicosis patients and 7 non-diseased donors. A total of 2,605 differentially expressed genes (DEGs) and critical pathway changes were identified in human silicosis lungs. Further, the DEGs in silicosis were compared with those in idiopathic pulmonary fibrosis (IPF) and chronic obstructive pulmonary diseases (COPD), to extend current knowledge about the disease mechanisms and develop potential drugs. This analysis revealed both common and specific regulations in silicosis, along with several critical genes (e.g., MUC5AC and FGF10), which are potential drug targets for silicosis treatment. Drugs including Plerixafor and Retinoic acid were predicted as potential candidates in treating silicosis. Overall, this study provides the first transcriptomic fingerprint of human silicosis lungs. The comparative transcriptome analyses comprehensively characterize pathological regulations resulting from silicosis, and provide valuable cues for silicosis treatment.

14.
Theranostics ; 11(15): 7600-7615, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34158869

RESUMEN

Rationale: Cardiac fibrosis is an important feature of cardiac remodeling and is a hallmark of heart failure. Recent studies indicate that elevated IgE plays a causal role in pathological cardiac remodeling. However, the underlying mechanism of how IgE promotes cardiac fibrosis has not been fully elucidated. Methods and Results: To explore the function of IgE in cardiac fibrosis, we stimulated mouse primary cardiac fibroblasts (CFs) with IgE and found that both IgE receptor (FcεR1) and fibrosis related proteins were increased after IgE stimulation. Specific deletion of FcεR1 in CFs alleviated angiotensin II (Ang II)-induced cardiac fibrosis in mice. To investigate the mechanisms underlying the IgE-mediated cardiac fibrosis, deep miRNA-seq was performed. Bioinformatics and signaling pathway analysis revealed that IgE upregulated Col1a1 and Col3a1 expression in CFs by repressing miR-486a-5p, with Smad1 participating downstream of miR-486a-5p in this process. Lentivirus-mediated overexpression of miR-486a-5p was found to alleviate Ang II-induced myocardial interstitial fibrosis in mice. Moreover, miR-486-5p serum levels were lower in patients with heart failure than in healthy controls, and were negatively correlated with NT-proBNP levels. Conclusions: Our study demonstrates that elevated IgE promotes pathological cardiac fibrosis by modulating miR-486a-5p and downstream factors, such as Smad1. These findings suggest new targets for pathological cardiac fibrosis intervention.


Asunto(s)
Cardiopatías/metabolismo , Inmunoglobulina E/metabolismo , MicroARNs/metabolismo , Miocardio/metabolismo , Animales , Fibrosis , Cardiopatías/genética , Cardiopatías/patología , Inmunoglobulina E/genética , Ratones , Ratones Noqueados , MicroARNs/genética , Miocardio/patología , Receptores de IgE/genética , Receptores de IgE/metabolismo , Proteína Smad1/genética , Proteína Smad1/metabolismo
15.
Chin Med J (Engl) ; 134(8): 898-907, 2021 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-33879753

RESUMEN

ABSTRACT: Pneumoconiosis refers to a spectrum of pulmonary diseases caused by inhalation of mineral dust, usually as the result of certain occupations. The main pathological features include chronic pulmonary inflammation and progressive pulmonary fibrosis, which can eventually lead to death caused by respiratory and/or heart failure. Pneumoconiosis is widespread globally, seriously threatening global public health. Its high incidence and mortality lie in improper occupational protection, and in the lack of early diagnostic methods and effective treatments. This article reviews the epidemiology, safeguard procedures, diagnosis, and treatment of pneumoconiosis, and summarizes recent research advances and future research prospects.


Asunto(s)
Enfermedades Profesionales , Exposición Profesional , Neumoconiosis , Fibrosis Pulmonar , Polvo , Humanos , Neumoconiosis/diagnóstico , Neumoconiosis/epidemiología
16.
Theranostics ; 11(5): 2381-2394, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33500731

RESUMEN

Rationale: Silicosis is a severe occupational lung disease. Current treatments for silicosis have highly limited availability (i.e., lung transplantation) or, do not effectively prolong patient survival time (i.e., lung lavage). There is thus an urgent clinical need for effective drugs to retard the progression of silicosis. Methods: To systematically characterize the molecular changes associated with silicosis and to discover potential therapeutic targets, we conducted a transcriptomics analysis of human lung tissues acquired during transplantation, which was integrated with transcriptomics and metabolomics analyses of silicosis mouse lungs. The results from the multi-omics analyses were then verified by qPCR, western blot, and immunohistochemistry. The effect of Ramatroban on the progression of silicosis was evaluated in a silica-induced mouse model. Results: Wide metabolic alterations were found in lungs from both human patients and mice with silicosis. Targeted metabolite quantification and validation of expression of their synthases revealed that arachidonic acid (AA) pathway metabolites, prostaglandin D2 (PGD2) and thromboxane A2 (TXA2), were significantly up-regulated in silicosis lungs. We further examined the effect of Ramatroban, a clinical antagonist of both PGD2 and TXA2 receptors, on treating silicosis using a mouse model. The results showed that Ramatroban significantly alleviated silica-induced pulmonary inflammation, fibrosis, and cardiopulmonary dysfunction compared with the control group. Conclusion: Our results revealed the importance of AA metabolic reprogramming, especially PGD2 and TXA2 in the progression of silicosis. By blocking the receptors of these two prostanoids, Ramatroban may be a novel potential therapeutic drug to inhibit the progression of silicosis.


Asunto(s)
Biomarcadores/metabolismo , Pulmón/patología , Metaboloma , Prostaglandina D2/metabolismo , Silicosis/patología , Tromboxano A2/metabolismo , Transcriptoma , Animales , Estudios de Casos y Controles , Femenino , Humanos , Pulmón/metabolismo , Masculino , Ratones , Silicosis/genética , Silicosis/metabolismo
18.
Circulation ; 143(10): 1014-1030, 2021 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-33305586

RESUMEN

BACKGROUND: Immunoglobulin E (IgE) belongs to a class of immunoglobulins involved in immune response to specific allergens. However, the roles of IgE and IgE receptor (FcεR1) in pathological cardiac remodeling and heart failure are unknown. METHODS: Serum IgE levels and cardiac FcεR1 expression were assessed in diseased hearts from human and mouse. The role of FcεR1 signaling in pathological cardiac remodeling was explored in vivo by FcεR1 genetic depletion, anti-IgE antibodies, and bone marrow transplantation. The roles of the IgE-FcεR1 pathway were further evaluated in vitro in primary cultured rat cardiomyocytes and cardiac fibroblasts (CFs). RNA sequencing and bioinformatic analyses were used to identify biochemical changes and signaling pathways that are regulated by IgE/FcεR1. RESULTS: Serum IgE levels were significantly elevated in patients with heart failure as well as in 2 mouse cardiac disease models induced by chronic pressure overload via transverse aortic constriction and chronic angiotensin II infusion. Interestingly, FcεR1 expression levels were also significantly upregulated in failing hearts from human and mouse. Blockade of the IgE-FcεR1 pathway by FcεR1 knockout alleviated transverse aortic constriction- or angiotensin II-induced pathological cardiac remodeling or dysfunction. Anti-IgE antibodies (including the clinical drug omalizumab) also significantly alleviated angiotensin II-induced cardiac remodeling. Bone marrow transplantation experiments indicated that IgE-induced cardiac remodeling was mediated through non-bone marrow-derived cells. FcεR1 was found to be expressed in both cardiomyocytes and CFs. In cultured rat cardiomyocytes, IgE-induced cardiomyocyte hypertrophy and hypertrophic marker expression were abolished by depleting FcεR1. In cultured rat CFs, IgE-induced CF activation and matrix protein production were also blocked by FcεR1 deficiency. RNA sequencing and signaling pathway analyses revealed that transforming growth factor-ß may be a critical mediator, and blocking transforming growth factor-ß indeed alleviated IgE-induced cardiomyocyte hypertrophy and cardiac fibroblast activation in vitro. CONCLUSIONS: Our findings suggest that IgE induction plays a causative role in pathological cardiac remodeling, at least partially via the activation of IgE-FcεR1 signaling in cardiomyocytes and CFs. Therapeutic strategies targeting the IgE-FcεR1 axis may be effective for managing IgE-mediated cardiac remodeling.


Asunto(s)
Inmunoglobulina E/metabolismo , Miocitos Cardíacos/metabolismo , Remodelación Ventricular/genética , Animales , Humanos , Masculino , Ratones , Ratones Noqueados
19.
Ecotoxicol Environ Saf ; 202: 110834, 2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-32622305

RESUMEN

Silicosis is caused by massive inhalation of silica-based particles, which leads to pulmonary inflammation, pulmonary fibrosis and lung dysfunction. Currently, the pathophysiological process of silicosis has not been well studied. Here, we defined the progression of silicosis as four stages by unsupervised clustering analysis: normal stage, inflammatory stage, progressive stage and fibrotic stage. Specifically, in normal stage, the lung function was normal, and no inflammation or fibrosis was detected in the lung tissue. Inflammatory stage showed a remarkable pulmonary inflammation but mild fibrosis and lung dysfunction. In progressive stage, significant lung dysfunction was observed, while pulmonary inflammation and fibrosis continued to deteriorate. Fibrotic stage revealed the most severe pulmonary fibrosis and lung dysfunction but no significant deterioration in inflammation. Since the common features were founded in both silicosis patients and rodents, we speculated that the pathophysiological processes of silicosis in patients might be similar to the rodents. Collectively, our new classification identified the process of silicosis, clarified the pathophysiological features of each stage, and provided some new insights for the progression of the disease.


Asunto(s)
Silicosis/fisiopatología , Animales , Fibrosis , Humanos , Inflamación/patología , Pulmón/patología , Neumonía/fisiopatología , Fibrosis Pulmonar/fisiopatología , Dióxido de Silicio
20.
Water Sci Technol ; 81(4): 668-678, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32460271

RESUMEN

Wastewater ecological soil infiltration system (WESIS) is a land treatment technology for decentralized wastewater treatment that has been applied all over the world. In this study, the pollutant removal, emission of greenhouse gases (GHGs) and functional gene abundances with different influent C/N ratios were evaluated in WESISs with/without intermittent aeration. Intermittent aeration and influent C/N ratio affect pollutant removal and GHG emission. Increased influent C/N ratio led to high total nitrogen (TN) removal, low CH4 and N2O emission in the aerated WESIS, which was different from the non-aerated WESIS. High average removal efficiencies of chemical oxygen demand (COD) (94.8%), NH4 +-N (95.1%), TN (91.2%), total phosphorus (TP) (91.1%) and low emission rates for CH4 (27.2 mg/(m2 d)) and N2O (10.5 mg/(m2 d)) were achieved with an influent C/N ratio of 12:1 in the aerated WESIS. Intermittent aeration enhanced the abundances of bacterial 16S rRNA, amoA, nxrA, narG, napA, nirK, nirS, qnorB, nosZ genes and decreased the abundances of the mcrA gene, which are involved in pollutant removal and GHG emission. Intermittent aeration would be an effective alternative to achieving high pollutant removal and low CH4 and N2O emission in high influent C/N ratio wastewater treatment.


Asunto(s)
Contaminantes Ambientales , Gases de Efecto Invernadero , Análisis de la Demanda Biológica de Oxígeno , Desnitrificación , Nitrógeno , ARN Ribosómico 16S , Suelo , Aguas Residuales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...