Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Reprod Dev ; 91(3): e23738, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38462735

RESUMEN

The parameters of sperm apoptosis and capacitation during liquid storage at 17°C can indicate the quality of pig sperm and the potential development of early embryos. However, the effect of kojic acid (KA) on semen preservation and its mechanism has not been fully understood. In this study, we discovered that adding KA to the diluent improved the antioxidant capacity of sperm mitochondria, maintained the normal structure of sperm mitochondria, and reduced sperm apoptosis. Western blot analysis revealed that KA prevented the release of Cytochrome c from mitochondria to the cytoplasm, reduced the expression of pro-apoptosis proteins cleaved Caspase-3 and cleaved Caspase-9, and increased the expression of the antiapoptosis protein Bcl-XL. Furthermore, KA also enhanced the motility parameters, oxidative phosphorylation level, adenosine triphosphate level, and protein tyrosine phosphorylation of capacitated sperm, while preserving the acrosome integrity and plasma membrane integrity of capacitated sperm. In conclusion, this study offers new insights into the molecular mechanism of how KA inhibits porcine sperm apoptosis and improves capacitated sperm parameters. Additionally, it suggests that KA can serve as an alternative to antibiotics.


Asunto(s)
Pironas , Preservación de Semen , Semen , Masculino , Porcinos , Animales , Motilidad Espermática , Espermatozoides/metabolismo , Apoptosis , Capacitación Espermática
2.
J Biol Chem ; 300(3): 105760, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38367663

RESUMEN

In the cold, the absence of the mitochondrial uncoupling protein 1 (UCP1) results in hyper-recruitment of beige fat, but classical brown fat becomes atrophied. Here we examine possible mechanisms underlying this phenomenon. We confirm that in brown fat from UCP1-knockout (UCP1-KO) mice acclimated to the cold, the levels of mitochondrial respiratory chain proteins were diminished; however, in beige fat, the mitochondria seemed to be unaffected. The macrophages that accumulated massively not only in brown fat but also in beige fat of the UCP1-KO mice acclimated to cold did not express tyrosine hydroxylase, the norepinephrine transporter (NET) and monoamine oxidase-A (MAO-A). Consequently, they could not influence the tissues through the synthesis or degradation of norepinephrine. Unexpectedly, in the cold, both brown and beige adipocytes from UCP1-KO mice acquired an ability to express MAO-A. Adipose tissue norepinephrine was exclusively of sympathetic origin, and sympathetic innervation significantly increased in both tissues of UCP1-KO mice. Importantly, the magnitude of sympathetic innervation and the expression levels of genes induced by adrenergic stimulation were much higher in brown fat. Therefore, we conclude that no qualitative differences in innervation or macrophage character could explain the contrasting reactions of brown versus beige adipose tissues to UCP1-ablation. Instead, these contrasting responses may be explained by quantitative differences in sympathetic innervation: the beige adipose depot from the UCP1-KO mice responded to cold acclimation in a canonical manner and displayed enhanced recruitment, while the atrophy of brown fat lacking UCP1 may be seen as a consequence of supraphysiological adrenergic stimulation in this tissue.


Asunto(s)
Tejido Adiposo Beige , Tejido Adiposo Pardo , Sistema Nervioso Simpático , Termogénesis , Proteína Desacopladora 1 , Animales , Ratones , Tejido Adiposo Beige/inervación , Tejido Adiposo Beige/metabolismo , Tejido Adiposo Pardo/inervación , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Blanco/metabolismo , Adrenérgicos/metabolismo , Monoaminooxidasa/genética , Monoaminooxidasa/metabolismo , Norepinefrina/metabolismo , Termogénesis/genética , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo , Ratones Noqueados , Aclimatación/genética , Sistema Nervioso Simpático/fisiología , Macrófagos/metabolismo
3.
Biol Reprod ; 110(1): 48-62, 2024 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-37812443

RESUMEN

Genomic integrity is critical for sexual reproduction, ensuring correct transmission of parental genetic information to the descendant. To preserve genomic integrity, germ cells have evolved multiple DNA repair mechanisms, together termed as DNA damage response. The RNA N6-methyladenosine is the most abundant mRNA modification in eukaryotic cells, which plays important roles in DNA damage response, and YTH N6-methyladenosine RNA binding protein 2 (YTHDF2) is a well-acknowledged N6-methyladenosine reader protein regulating the mRNA decay and stress response. Despite this, the correlation between YTHDF2 and DNA damage response in germ cells, if any, remains enigmatic. Here, by employing a Ythdf2-conditional knockout mouse model as well as a Ythdf2-null GC-1 mouse spermatogonial cell line, we explored the role and the underlying mechanism for YTHDF2 in spermatogonial DNA damage response. We identified that, despite no evident testicular morphological abnormalities under the normal circumstance, conditional mutation of Ythdf2 in adult male mice sensitized germ cells, including spermatogonia, to etoposide-induced DNA damage. Consistently, Ythdf2-KO GC-1 cells displayed increased sensitivity and apoptosis in response to DNA damage, accompanied by the decreased SET domain bifurcated 1 (SETDB1, a histone methyltransferase) and H3K9me3 levels. The Setdb1 knockdown in GC-1 cells generated a similar phenotype, but its overexpression in Ythdf2-null GC-1 cells alleviated the sensitivity and apoptosis in response to DNA damage. Taken together, these results demonstrate that the N6-methyladenosine reader YTHDF2 promotes DNA damage repair by positively regulating the histone methyltransferase SETDB1 in spermatogonia, which provides novel insights into the mechanisms underlying spermatogonial genome integrity maintenance and therefore contributes to safe reproduction.


Asunto(s)
Acetatos , Fenoles , Proteínas de Unión al ARN , Espermatogonias , Animales , Masculino , Ratones , Daño del ADN , Reparación del ADN , Histona Metiltransferasas/genética , Histona Metiltransferasas/metabolismo , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Espermatogonias/metabolismo , Factores de Transcripción/genética
4.
J Biol Chem ; 299(11): 105316, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37797697

RESUMEN

Lack of estradiol production by granulosa cells blocks follicle development, causes failure of estrous initiation, and results in an inability to ovulate. The ubiquitin-proteasome system plays a critical role in maintaining protein homeostasis and stability of the estrous cycle, but knowledge of deubiquitination enzyme function in estradiol synthesis is limited. Here, we observe that the deubiquitinase ubiquitin C-terminal hydrolase 1 (UCHL1) is more significant in estrous sows and high litter-size sows than in nonestrous sows and low-yielding sows. Overexpression of UCHL1 promotes estradiol synthesis in granulosa cells, and interference with UCHL1 has the opposite effect. UCHL1 binds, deubiquitinates, and stabilizes voltage-dependent anion channel 2 (VDAC2), promoting the synthesis of the estradiol precursor pregnenolone. Cysteine 90 (C90) of UCHL1 is necessary for its deubiquitination activity, and Lys45 and Lys64 in VDAC2 are essential for its ubiquitination and degradation. In vivo, compared with WT and sh-NC-AAV groups, the estrus cycle of female mice is disturbed, estradiol level is decreased, and the number of antral follicles is decreased after the injection of sh-UCHL1-AAV into ovarian tissue. These findings suggest that UCHL1 promotes estradiol synthesis by stabilizing VDAC2 and identify UCHL1 as a candidate gene affecting reproductive performance.


Asunto(s)
Estradiol , Ubiquitina Tiolesterasa , Canal Aniónico 2 Dependiente del Voltaje , Animales , Femenino , Ratones , Células de la Granulosa/metabolismo , Folículo Ovárico/metabolismo , Porcinos , Ubiquitina Tiolesterasa/metabolismo , Canal Aniónico 2 Dependiente del Voltaje/metabolismo , Sus scrofa
5.
Mol Nutr Food Res ; 67(22): e2300130, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37770381

RESUMEN

SCOPE: Alginic acid (AA) from brown algae is a marine organic compound. There is extensive use of AA in the food industry and healthcare, suggesting a high probability of AA exposure. The present study investigates the effects of AA on porcine ovarian granulosa cells (GCs) and oocytes to explore its mechanism in female reproduction because of its adverse effects on reproduction. METHODS AND RESULTS: The study adds 20 µM AA to the porcine primary ovarian GCs medium and porcine oocyte in vitro maturation (IVM) medium. Estrogen and progesterone levels are downregulated in GCs. Reactive oxygen species are excessive, and the antioxidant capacity declines. Then mitochondria-mediated apoptosis pathway is involved in GCs apoptosis. In addition, scores of autophagosomes are found in the experimental cells. Furthermore, AA significantly inhibits the proliferation of GCs around cumulus-oocyte complexes (COCs) accompanied by abnormal spindle assembly, chromosome arrangement disorder, and aberrant cortical granules distribution in oocytes, leading to a decreased oocyte maturation rate. CONCLUSION: These findings suggest that 20 µM AA is toxic to sow reproduction by interfering with estrogen production, oxidative stress, mitochondria-mediated apoptosis, autophagy in GCs of sows, and oocyte maturation.


Asunto(s)
Ácido Algínico , Oocitos , Porcinos , Femenino , Animales , Ácido Algínico/metabolismo , Ácido Algínico/farmacología , Oogénesis , Células de la Granulosa , Estrógenos/metabolismo
6.
Genome Biol ; 24(1): 211, 2023 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-37723525

RESUMEN

BACKGROUND: Structural variations (SVs) in individual genomes are major determinants of complex traits, including adaptability to environmental variables. The Mongolian and Hainan cattle breeds in East Asia are of taurine and indicine origins that have evolved to adapt to cold and hot environments, respectively. However, few studies have investigated SVs in East Asian cattle genomes and their roles in environmental adaptation, and little is known about adaptively introgressed SVs in East Asian cattle. RESULTS: In this study, we examine the roles of SVs in the climate adaptation of these two cattle lineages by generating highly contiguous chromosome-scale genome assemblies. Comparison of the two assemblies along with 18 Mongolian and Hainan cattle genomes obtained by long-read sequencing data provides a catalog of 123,898 nonredundant SVs. Several SVs detected from long reads are in exons of genes associated with epidermal differentiation, skin barrier, and bovine tuberculosis resistance. Functional investigations show that a 108-bp exonic insertion in SPN may affect the uptake of Mycobacterium tuberculosis by macrophages, which might contribute to the low susceptibility of Hainan cattle to bovine tuberculosis. Genotyping of 373 whole genomes from 39 breeds identifies 2610 SVs that are differentiated along a "north-south" gradient in China and overlap with 862 related genes that are enriched in pathways related to environmental adaptation. We identify 1457 Chinese indicine-stratified SVs that possibly originate from banteng and are frequent in Chinese indicine cattle. CONCLUSIONS: Our findings highlight the unique contribution of SVs in East Asian cattle to environmental adaptation and disease resistance.


Asunto(s)
Adaptación Fisiológica , Susceptibilidad a Enfermedades , Animales , Bovinos , Asia Oriental , China , Tuberculosis Bovina/genética , Adaptación Fisiológica/genética
7.
Food Funct ; 14(19): 8797-8813, 2023 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-37675852

RESUMEN

Medium-chain triglycerides (MCTs) are absorbed and metabolized more rapidly than long-chain triglycerides (LCTs) and therefore are considered to have obesity-prevention potential in foods. The effect of adding tricaprylin, an MCT, to food on fat deposition and intestinal health is uncharted. In this study, mice were randomly divided into four groups and fed a normal diet (ND), ND with tricaprylin, a high-fat diet (HFD), or HFD with tricaprylin. Supplementation of 2% tricaprylin in HFD significantly increased the body weight, fat mass, liver weight, adipocyte size in adipose tissue and liver, and upregulated genes related to fat deposition. Metabolomic analysis of serum and adipose tissue revealed that tricaprylin significantly increased the contents of metabolites related to lipid metabolism, triglyceride storage, and fat deposition related signaling pathways. In vitro experiments and molecular docking analysis suggest that octanoic acid, a primary decomposition product of tricaprylin, may promote adipogenic differentiation of preadipocytes by acting as a PPARγ ligand to activate the expression of lipogenesis-related genes. Although supplementation with 2% tricaprylin in HFD cannot reduce fat deposition, it has a beneficial effect on intestinal health. Tricaprylin improved intestinal morphology, digestive enzyme activity, short-chain fatty acid concentration, and intestinal barrier function-related protein expression, while reducing inflammatory factor levels and the abundance of harmful intestinal microorganisms.


Asunto(s)
Tejido Adiposo , Dieta Alta en Grasa , Ratones , Animales , Dieta Alta en Grasa/efectos adversos , Simulación del Acoplamiento Molecular , Triglicéridos/metabolismo , Tejido Adiposo/metabolismo , Hígado/metabolismo , Ratones Endogámicos C57BL
8.
Theriogenology ; 212: 19-29, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37683501

RESUMEN

During growth, proliferation, differentiation, atresia, ovulation, and luteinization, the morphology and function of granulosa cells (GCs) change. Estrogen and progesterone are steroid hormones secreted by GCs that regulate the ovulation cycle of sows and help maintain pregnancy. miR-10a-5p is highly expressed in GCs and can inhibit GC proliferation. However, the role of miR-10a-5p in the steroid hormone synthesis of porcine GCs is unclear. In this study, miR-10a-5p agomir or antagomir was transfected into GCs. Overexpression of miR-10a-5p in GCs inhibited steroid hormone secretion and significantly downregulated steroid hormone synthesis via 3ß-hydroxy steroid dehydrogenase and cytochrome P450 family 19 subfamily A member 1. Interference with miR-10a-5p had the opposite effect. Bodipy and Oil Red O staining showed that overexpression of miR-10a-5p significantly reduced the formation of lipid droplets. Overexpression significantly inhibited the content of total cholesterol esters in GCs. The mRNA and protein levels of 3-hydroxy-3-methylglutaryl-CoA reductase and scavenger receptor class B member 1 decreased significantly, and the opposite effects were seen by interference with miR-10a-5p. Bioinformatic analysis of potential targets identified cAMP-responsive element binding protein 1 as a potential target and dual-luciferase reporter system analysis confirmed that miR-10a-5p directly targets the 3' untranslated region. These findings suggest that miR-10a-5p inhibits the expression of 3ß-hydroxy steroid dehydrogenase and cytochrome P450 family 19 subfamily A member 1 to inhibit the synthesis of steroid hormones in GCs. In addition, miR-10a-5p inhibits the cholesterol metabolism pathway of GCs to modulate steroid hormone synthesis.


Asunto(s)
MicroARNs , Animales , Femenino , Apoptosis , Proliferación Celular , Colesterol/metabolismo , Familia 19 del Citocromo P450/metabolismo , Células de la Granulosa , Hormonas/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Oxidorreductasas/metabolismo , Esteroides/metabolismo , Porcinos
9.
Theriogenology ; 211: 232-240, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37660475

RESUMEN

Immature oocyte (germinal vesicle stage, GV) vitrification can avoid a cycle of ovarian stimulation, which is friendly to patients with hormone-sensitive tumors. However, the in vitro maturation of vitrification-thawed GV oocyte usually results in aneuploidy, and the underlying mechanism remains unclear. Stable spindle poles are important for accurate chromosome segregation. Acentriolar microtubule-organizing centers (aMTOCs) undergo fragmentation and reaggregation to form spindle poles. Microtubule nucleation is facilitated via the perichromosome Ran after GVBD, which plays an important role in aMTOCs fragmentation. This study showed that vitrification may reduce microtubule density by decreasing perichromosomal Ran levels, which reduced the localization of pKIF11, thereby decreased the fragmentation of aMTOCs and formed a more focused spindle pole, ultimately resulted in aneuploidy. This study revealed the mechanism of abnormal spindle pole formation in vitrified oocytes and offered a theoretical support to further improve the quality of vitrified oocytes.


Asunto(s)
Vitrificación , Animales , Ratones , Oocitos , Aneuploidia , Ciclo Celular , Polos del Huso
10.
Theriogenology ; 212: 172-180, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37738821

RESUMEN

Gap junction intercellular communication (GJIC) among granulosa cells plays an important role in folliculogenesis, and it is temporal-spatially regulated during follicular development. Connexin (Cx) proteins predominantly form the basal structure of gap junctions in granulosa cells. In our study, immunohistochemical analysis revealed that Cx43 is the most widely expressed connexin in porcine follicles, especially among the large antral follicles. With application of insulin on porcine granulosa cells, we found that insulin significantly facilitated the protein level of Cx43, not mRNA level. This process is dependent on the phosphorylated activities of AKT and Erk since selective AKT and Erk inhibitors, LY294002 and U0126, respectively, hampered the potential of insulin to up-regulate Cx43 protein expression. As a consequence, the insulin-enhanced Cx43-couple GJIC activity in porcine granulosa cells was corresponding attenuated by the administration of LY294002 and U0126. Our findings provide a new insight into the molecular mechanisms by which insulin mediates cell-cell communication in porcine granulosa cells and sheds light on nutrition-reproduction interactions.


Asunto(s)
Conexina 43 , Insulina , Animales , Femenino , Comunicación Celular/fisiología , Conexina 43/genética , Conexina 43/metabolismo , Conexinas/metabolismo , Uniones Comunicantes/metabolismo , Células de la Granulosa/metabolismo , Insulina/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Porcinos
11.
Redox Biol ; 65: 102829, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37527604

RESUMEN

Gut health is important for nutrition absorption, reproduction, and lactation in perinatal and early weaned mammals. Although melatonin functions in maintaining circadian rhythms and preventing obesity, neurodegenerative diseases, and viral infections, its impact on the gut microbiome and its function in mediating gut health through gut microbiota remain largely unexplored. In the present study, the microbiome of rats was monitoring after fecal microbiota transplantation (FMT) and foster care (FC). The results showed that FMT and FC increased intestinal villus height/crypt depth in perinatal rats. Mechanistically, the melatonin-mediated remodeling of gut microbiota inhibited oxidative stress, which led to attenuation of autophagy and inflammation. In addition, FMT and FC encouraged the growth of more beneficial intestinal bacteria, such as Allobaculum, Bifidobacterium, and Faecalibaculum, which produce more short-chain fatty acids to strengthen intestinal anti-oxidation. These findings suggest that melatonin-treated gut microbiota increase the production of SCFAs, which improve gut health by reducing oxidative stress, autophagy and inflammation. The transfer of melatonin-treated gut microbiota may be a new and effective method by which to ameliorate gut health in perinatal and weaned mammals.


Asunto(s)
Microbioma Gastrointestinal , Melatonina , Femenino , Ratas , Animales , Melatonina/farmacología , Trasplante de Microbiota Fecal/métodos , Inflamación , Mamíferos
12.
Trends Endocrinol Metab ; 34(10): 666-681, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37599201

RESUMEN

Skeletal muscle and adipose tissues (ATs) are secretory organs that release secretory factors including cytokines and exosomes. These factors mediate muscle-adipose crosstalk to regulate systemic metabolism via paracrine and endocrine pathways. Myokines and adipokines are cytokines secreted by skeletal muscle and ATs, respectively. Exosomes loaded with nucleic acids, proteins, lipid droplets, and organelles can fuse with the cytoplasm of target cells to perform regulatory functions. A major regulatory component of exosomes is miRNA. In addition, numerous novel myokines and adipokines have been identified through technological innovations. These discoveries have identified new biomarkers and sparked new insights into the molecular regulation of skeletal muscle growth and adipose deposition. The knowledge may contribute to potential diagnostic and therapeutic targets in metabolic disease.


Asunto(s)
MicroARNs , Humanos , MicroARNs/genética , Citocinas , Obesidad , Músculo Esquelético , Adipoquinas
13.
J Anim Sci Biotechnol ; 14(1): 82, 2023 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-37280645

RESUMEN

BACKGROUND: Clock circadian regulator (CLOCK) is a core factor of the mammalian biological clock system in regulating female fertility and ovarian physiology. However, CLOCK's specific function and molecular mechanism in porcine granulosa cells (GCs) remain unclear. In this study, we focused on CLOCK's effects on GC proliferation. RESULTS: CLOCK significantly inhibited cell proliferation in porcine GCs. CLOCK decreased the expression of cell cycle-related genes, including CCNB1, CCNE1, and CDK4 at the mRNA and protein levels. CDKN1A levels were upregulated by CLOCK. ASB9 is a newly-identified target of CLOCK that inhibits GC proliferation; CLOCK binds to the E-box element in the ASB9 promoter. CONCLUSIONS: These findings suggest that CLOCK inhibits the proliferation of porcine ovarian GCs by increasing ASB9 level.

14.
Sheng Wu Gong Cheng Xue Bao ; 39(4): 1502-1513, 2023 Apr 25.
Artículo en Chino | MEDLINE | ID: mdl-37154319

RESUMEN

Skeletal muscle is one of the most important organs in animal, and the regulatory mechanism of skeletal muscle development is of great importance for the diagnosis of muscle-related diseases and the improvement of meat quality of livestock. The regulation of skeletal muscle development is a complex process, which is regulated by a large number of muscle secretory factors and signaling pathways. In addition, in order to maintain steady-state and maximum use of energy metabolism in the body, the body coordinates multiple tissues and organs to form the complex and sophisticated metabolic regulation network, which plays an important role for the regulation of skeletal muscle development. With the development of omics technologies, the underlying mechanism of tissue and organ communication has been deeply studied. This paper reviews the effects of crosstalk among adipose tissue, nerve tissue and intestinal tissue on skeletal muscle development, with the aim to provide a theoretical basis for targeted regulation of skeletal muscle development.


Asunto(s)
Tejido Adiposo , Músculo Esquelético , Animales , Músculo Esquelético/metabolismo , Tejido Adiposo/metabolismo , Transducción de Señal
15.
Theriogenology ; 204: 40-49, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37058855

RESUMEN

Oocyte vitrification has been widely application in female fertility preservation. Recent studies found that vitrification of immature (germinal vesicle stage, GV) oocytes increased the risk of aneuploidy during meiotic maturation; however, the underlying mechanisms and the strategies to prevent this defect remain unexplored. In this study, we found that vitrification of GV oocytes decreased the first polarbody extrusion rate (90.51 ± 1.04% vs. 63.89 ± 1.39%, p < 0.05) and increased the aneuploid rate (2.50% vs. 20.00%, p < 0.05), accompanied with a series of defects during meiotic maturation, including aberrant spindle morphology, chromosome misalignment, incorrect Kinetochore-Microtubule attachments (KT-MTs) and weakened spindle assembly checkpoint protein complex (SAC) function. We also found that vitrification disrupted mitochondrial function by increasing mitochondrial Ca2+ levels. Importantly, inhibition of mitochondrial Ca2+ entry by 1 µM Ru360 significantly restored mitochondrial function and rescued the meiotic defects, indicating that the increase of mitochondrial Ca2+, at least, was a cause of meiotic defects in vitrified oocytes. These results shed light on the molecular mechanisms of oocyte vitrification-induced adverse effects of meiotic maturation and provided a potential strategy to improve oocyte cryopreservation protocols further.


Asunto(s)
Preservación de la Fertilidad , Vitrificación , Femenino , Animales , Oocitos/fisiología , Criopreservación/métodos , Criopreservación/veterinaria , Preservación de la Fertilidad/veterinaria , Mitocondrias , Aneuploidia
16.
Theriogenology ; 202: 51-60, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36921565

RESUMEN

Circadian locomotor output cycles kaput (CLOCK) is a critical component of the mammalian circadian clock system and regulates ovarian physiology. However, the functions and mechanisms of CLOCK in porcine granulosa cells (GCs) are poorly understood. The present study focused on CLOCK's effects on estradiol synthesis. Similarity analysis showed that CLOCK is highly conserved between pigs and other species. The phylogenetic tree analysis indicated that porcine CLOCK was most closely related to that in Arabian camels. CLOCK significantly reduced E2 synthesis in GCs. CLOCK reduced the expression of steroidogenesis-related genes at the mRNA and protein levels, including CYP19A1, CYP11A1, and StAR. CYP17A1 levels were significantly downregulated. We demonstrated that CLOCK dramatically decreased ATP content, mitochondrial copy number, and mitochondrial membrane potential (MMP) and increased reactive oxygen species levels in GCs. We observed that mitochondria were severely damaged with fuzzy and fractured cristae and swollen matrix. These findings suggest that mitochondrial function and E2 synthesis are impaired following the alteration of CLOCK gene expression in porcine ovarian GCs.


Asunto(s)
Regulación de la Expresión Génica , Células de la Granulosa , Femenino , Porcinos , Animales , Filogenia , Células de la Granulosa/fisiología , Estradiol/metabolismo , Mitocondrias/metabolismo , Expresión Génica , Mamíferos
17.
Meat Sci ; 198: 109116, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36657261

RESUMEN

Reducing backfat thickness (BFT), determined by subcutaneous fat deposition, is vital in Chinese developed pig breeds. The level of miR-503 in the backfat of Guanzhong Black pigs was found to be lower than that in Large White pigs, implying that miR-503 may be related to BFT. However, the effect and mechanism of miR-503 on adipogenic differentiation in subcutaneous preadipocytes remain unknown. Compared with Large White pigs, the BFT and body fat content of Guanzhong Black pigs were greater, but the level of miR-503 was lower in subcutaneous adipose tissue (SAT) at 180 days of age. Furthermore, miR-503 promoted preadipocyte proliferation by increasing the proportion of S-phase and EdU-positive cells. However, miR-503 inhibited preadipocyte differentiation by downregulating adipogenic gene expression. Mechanistically, miR-503 directly targeted musculoaponeurotic fibrosarcoma oncogene homolog K (MafK) in both proliferating and differentiating preadipocytes to repress adipogenesis. Our findings provide a novel miRNA biomarker for reducing pig BFT levels to improve carcass quality.


Asunto(s)
Adipogénesis , MicroARNs , Animales , Adipogénesis/genética , Tejido Adiposo , Diferenciación Celular/genética , MicroARNs/genética , Grasa Subcutánea/metabolismo , Porcinos/genética , Factor de Transcripción MafK/metabolismo
18.
Anim Biotechnol ; 34(2): 268-279, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34346296

RESUMEN

Intramuscular fat is positively related to meat quality including tenderness, flavor, and juiciness. Long noncoding RNA (LncRNA) plays a vital role in regulating adipogenesis. However, it is largely unknown about lncRNAs associated with porcine intramuscular adipocyte adipogenesis. In the present study, we focus on a novel LncRNA, which is named lncIMF2, associated with adipogenesis by our previous RNA-sequence analysis and bioinformatics analysis. We demonstrated LncIMF2 knockdown inhibited the proliferation of porcine intramuscular adipocytes while expression of cell cycle-related genes was decreased. Besides, we found LncIMF2 knockdown inhibited expression of adipogenic differentiation marker genes including PPARγ (Peroxisome proliferator-activated reporter gamma) and ATGL (Adipose triglyceride lipase). Similarly, overexpression of LncIMF2 promotes proliferation and differentiation of porcine intramuscular preadipocytes. Moreover, we proved that IncIMF2 acts as a molecular sponge for MicroRNA-217 (miR-217), which has been found associated with adipogenesis, thereby affecting the expression of the miR-217 target gene. Collectively, our findings will contribute to a deeper understanding of the role of LncRNA in pig IMF deposition for the improvement of meat quality.


Asunto(s)
MicroARNs , ARN Largo no Codificante , Porcinos , Animales , Adipogénesis/genética , ARN Largo no Codificante/metabolismo , Diferenciación Celular/genética , Adipocitos/fisiología , MicroARNs/genética
19.
Theriogenology ; 194: 1-12, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36183492

RESUMEN

The proliferation and steroidogenesis of mammalian ovarian granulosa cells (GCs) are related to follicular development. Previous studies found that fibroblast growth factor 21 (FGF21) regulated female fertility through the hypothalamic-pituitary-gonad axis. However, FGF21 receptors are expressed on GCs, so we speculate that it might affect female reproduction by regulating their physiological activities. Here, we showed that FGF21, fibroblast growth factor receptor-1(FGFR1), and beta-klotho (KLB) were expressed in porcine GCs. ELISA assays showed that estradiol (E2) production was increased significantly when treating GCs with recombinant FGF21 (rFGF21). In addition, rFGF21 upregulated the mRNA and protein levels of E2 synthesis-related genes including StAR, CYP11A1, and CYP19A1 in porcine GCs. Correspondingly, FGF21 siRNA inhibited E2 levels and its synthesis-related gene expression. After rFGF21 treatment, CCK8 showed increased cell viability, and flow cytometry showed that the number of S phase increased, and cycle-related genes also increased. However, treatment with FGF21 siRNA to porcine GCs suppressed the cell cycle, viability, and EdU positive cell number. Consequently, FGF21/FGFR1/KLB forms a complex to activate the phosphatidylinositol-3-kinase (PI3K)/AKT/mTOR signaling pathway and further promote the proliferation and E2 synthesis in porcine GCs. Collectively, these findings suggests that FGF21 regulates porcine ovarian folliculogenesis.


Asunto(s)
Estradiol , Fosfatidilinositol 3-Quinasas , Femenino , Porcinos , Animales , Estradiol/farmacología , Estradiol/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Interferente Pequeño , Células de la Granulosa/fisiología , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo , Transducción de Señal , Proliferación Celular/genética , Mamíferos
20.
Mol Cell Endocrinol ; 558: 111765, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36049599

RESUMEN

Estradiol (E2) synthesis, cell proliferation and the apoptosis of porcine granulosa cells (GCs) affect follicular growth and development. The miR-184 level in ovary tissues of Yorkshire × Landrace sows was significantly higher in high-yielding sows than that in low-yielding sows, which was the same as in Yorkshire sows. However, the roles of miR-184 on E2 granulosa cells (GCs) are still unclear. We found that miR-184 promoted E2 synthesis and proliferation but inhibited apoptosis in GCs by targeting nuclear receptor subfamily 1 group D member 1 (NR1D1), cyclin dependent kinase inhibitor 1A (P21,CDKN1A) and homeodomain interacting protein kinase 2 (HIPK2) respectively. These findings indicated that miR-184 is a novel key factor that regulates the physiological functions of GCs.


Asunto(s)
MicroARNs , Porcinos , Femenino , Animales , MicroARNs/genética , MicroARNs/metabolismo , Células de la Granulosa/metabolismo , Proliferación Celular/genética , Apoptosis/genética , Estradiol/farmacología , Estradiol/metabolismo , Quinasas Ciclina-Dependientes/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Proteínas Quinasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...