Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Med Chem ; 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39159497

RESUMEN

The phosphoinositide 3-kinase (PI3K)/mammalian target of rapamycin (mTOR) signaling pathway is a frequently dysregulated pathway in human cancer, and PI3Kα is one of the most frequently mutated kinases in human cancer. A selective PI3Kα inhibitor may provide the opportunity to spare patients the side effects associated with broader inhibition of the class I PI3K family. Here, we describe our efforts to discover a novel series of selective PI3Kα inhibitors using structure-based drug design and molecular docking to inform the design of 6H-benzo[c]chromen inhibitors. XJTU-L453 (21) was identified with PI3Kα inhibitory potency and unique selectivity over other PI3K isoforms and all other kinases tested. Further evaluation of pharmacokinetic properties and in vivo efficacy led to the identification of the preclinical potential of XJTU-L453 (21).

2.
Endocrine ; 80(1): 201-211, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36598711

RESUMEN

BACKGROUND: Current studies have shown that Sirtuin3 (SIRT3) plays a key role in oocyte maturation. Polycystic ovary syndrome (PCOS) is a common disease caused by endocrine and metabolic abnormalities. The specific regulatory role and mechanism of SIRT3 in PCOS have not been reported. METHODS: SIRT3 was overexpressed in dihydrotestosterone (DHT)-induced PCOS model in mice. Ovary morphology, serum hormone level, and apoptosis of tissue cells were detected. The expression of SIRT3/Forkhead box protein O1 (FOXO1)/peroxlsome proliferator-activated receptor-γ coactlvat-1α (PGC-1α)-related proteins was detected. Then SIRT3 was overexpressed in DHT-induced human granulosa-like tumor cell line KGN. After the detection of the pathway-associated proteins, PGC-1α specific inhibitor SR-18292 was added to detect cell apoptosis, mitochondrial membrane potential, mitochondrial ROS (MitoROS) levels, and other mitochondrial-related indicators RESULTS: The expression of SIRT3 in PCOS model was significantly decreased. Overexpression of SIRT3 could significantly improve ovarian morphology and serum sex hormone levels in DHT-induced PCOS mice and inhibit apoptosis both in vitro and in vivo. Overexpression of SIRT3 also could improve mitochondrial dysfunction in DHT-induced KGN cells via FOXO1/PGC-1α signaling pathway. And PGC-1α inhibitor SR-18292 reversed the protective effect of SIRT3 overexpression on apoptosis and mitochondrial function damage of DHT-induced KGN cells. CONCLUSION: SIRT3 regulated FOXO1/PGC-1α signaling pathway to reduce mitochondrial dysfunction in PCOS, thereby improving PCOS.


Asunto(s)
Síndrome del Ovario Poliquístico , Sirtuina 3 , Animales , Femenino , Humanos , Ratones , Proteína Forkhead Box O1/metabolismo , Mitocondrias , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Síndrome del Ovario Poliquístico/metabolismo , Transducción de Señal , Sirtuina 3/genética , Sirtuina 3/metabolismo
3.
Pest Manag Sci ; 75(6): 1718-1725, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30525312

RESUMEN

BACKGROUND: Grain aphid (Sitobion avenae F.) is a dominant pest that limits cereal crop production around the globe. Gq proteins have important roles in signal transduction in insect olfaction. Plant-mediated RNA interference (RNAi) has been widely studied in insect control, but its application for the control wheat aphid in the field requires further study. Here, we used double-stranded (ds)RNA feeding to verify the potential of selected Gqα fragments for host-mediated RNAi, and then evaluated the effect of RNAi on aphid olfaction in transgenic wheat in the greenhouse and field. RESULTS: Gqα gene was expressed in the aphid life cycle, and a 540 bp fragment shared 98.1% similarity with the reported sequence. dsGqα feeding reduced the expression of Gqα, and both reproduction and molting in the grain aphid. Feeding transgenic lines in the greenhouse downregulated expression of aphid Gqα, and significantly reduced reproduction and molting numbers. Furthermore, our field results indicate that transgenic lines have lower aphid numbers and higher 1000-grain weight than an unsprayed wild-type control. CONCLUSION: Plant-mediated silencing of an essential olfactory-related Gqα gene could enhance resistance to grain aphid in common wheat in both the greenhouse and the field. © 2018 Society of Chemical Industry.


Asunto(s)
Áfidos/genética , Ambiente Controlado , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/genética , Control Biológico de Vectores/métodos , Interferencia de ARN , Olfato/genética , Triticum/genética , Animales , Áfidos/crecimiento & desarrollo , Áfidos/fisiología , Muda/genética , Plantas Modificadas Genéticamente , Reproducción/genética
4.
Hum Mol Genet ; 27(20): 3475-3487, 2018 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-29931299

RESUMEN

Proteoglycans are among the most abundant and structurally complex biomacromolecules and play critical roles in connective tissues. They are composed of a core protein onto which glycosaminoglycan (GAG) side chains are attached via a linker region. Biallelic mutations in B3GALT6, encoding one of the linker region glycosyltransferases, are known to cause either spondyloepimetaphyseal dysplasia (SEMD) or a severe pleiotropic form of Ehlers-Danlos syndromes (EDS). This study provides clinical, molecular and biochemical data on 12 patients with biallelic B3GALT6 mutations. Notably, all patients have features of both EDS and SEMD. In addition, some patients have severe and potential life-threatening complications such as aortic dilatation and aneurysm, cervical spine instability and respiratory insufficiency. Whole-exome sequencing, next generation panel sequencing and direct sequencing identified biallelic B3GALT6 mutations in all patients. We show that these mutations reduce the amount of ß3GalT6 protein and lead to a complete loss of galactosyltransferase activity. In turn, this leads to deficient GAG synthesis, and ultrastructural abnormalities in collagen fibril organization. In conclusion, this study redefines the phenotype associated with B3GALT6 mutations on the basis of clinical, molecular and biochemical data in 12 patients, and provides an in-depth assessment of ß3GalT6 activity and GAG synthesis to better understand this rare condition.


Asunto(s)
Síndrome de Ehlers-Danlos/genética , Secuenciación del Exoma , Galactosiltransferasas/genética , Mutación , Fenotipo , Adulto , Niño , Preescolar , Síndrome de Ehlers-Danlos/enzimología , Síndrome de Ehlers-Danlos/patología , Pruebas de Enzimas , Femenino , Galactosiltransferasas/metabolismo , Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Lactante , Masculino
5.
Molecules ; 23(4)2018 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-29587341

RESUMEN

Wheat aphids are major pests during the seed filling stage of wheat. Plant lectins are toxic to sap-sucking pests such as wheat aphids. In this study, Pinellia pedatisecta agglutinin (ppa), a gene encoding mannose binding lectin, was cloned, and it shared 92.69% nucleotide similarity and 94% amino acid similarity with Pinellia ternata agglutinin (pta). The ppa gene, driven by the constitutive and phloem-specific ribulose bisphosphate carboxylase small subunit gene (rbcs) promoter in pBAC-rbcs-ppa expression vector, was transferred into the wheat cultivar Baofeng104 (BF104) by particle bombardment transformation. Fifty-four T0 transgenic plants were generated. The inheritance and expression of the ppa gene were confirmed by PCR and RT-PCR analysis respectively, and seven homozygous transgenic lines were obtained. An aphid bioassay on detached leaf segments revealed that seven ppa transgenic wheat lines had lower aphid growth rates and higher inhibition rates than BF104. Furthermore, two-year aphid bioassays in isolated fields showed that aphid numbers per tiller of transgenic lines were significantly decreased, compared with wild type BF104. Therefore, ppa could be a strong biotechnological candidate to produce aphid-resistant wheat.


Asunto(s)
Áfidos/crecimiento & desarrollo , Lectinas de Unión a Manosa/genética , Pinellia/metabolismo , Triticum/crecimiento & desarrollo , Animales , Secuencia de Bases , Clonación Molecular , Lectinas de Unión a Manosa/metabolismo , Control Biológico de Vectores , Pinellia/genética , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/parasitología , Lectinas de Plantas/genética , Lectinas de Plantas/metabolismo , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Plantas Modificadas Genéticamente/metabolismo , Regiones Promotoras Genéticas , Triticum/genética , Triticum/parasitología
6.
Front Plant Sci ; 8: 1314, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28798764

RESUMEN

Drought is the most serious abiotic stress limiting rice production, and deep root is the key contributor to drought avoidance. However, the genetic mechanism regulating the development of deep roots is largely unknown. In this study, the transcriptomes of 74 root samples from 37 rice varieties, representing the extreme genotypes of shallow or deep rooting, were surveyed by RNA-seq. The 13,242 differentially expressed genes (DEGs) between deep rooting and shallow rooting varieties (H vs. L) were enriched in the pathway of genetic information processing and metabolism, while the 1,052 DEGs between the deep roots and shallow roots from each of the plants (D vs. S) were significantly enriched in metabolic pathways especially energy metabolism. Ten quantitative trait transcripts (QTTs) were identified and some were involved in energy metabolism. Forty-nine candidate DEGs were confirmed by qRT-PCR and microarray. Through weighted gene co-expression network analysis (WGCNA), we found 18 hub genes. Surprisingly, all these hub genes expressed higher in deep roots than in shallow roots, furthermore half of them functioned in energy metabolism. We also estimated that the ATP production in the deep roots was faster than shallow roots. Our results provided a lot of reliable candidate genes to improve deep rooting, and firstly highlight the importance of energy metabolism to the development of deep roots.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA