Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Stem Cells Int ; 2020: 5128128, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32148520

RESUMEN

OBJECTIVE: Parathyroid hormone (PTH) is considered to be essential during the tooth development. Stem cells from the apical papilla (SCAPs) are responsible for dentine formation. However, the interaction between PTH and SCAPs remains unclear. This study was aimed at investigating the effects of PTH on odonto/osteogenic differentiation capacity of SCAPs and elucidating the underlying molecular mechanisms. Materials and Methods. Here, SCAPs were isolated and identified in vitro. Effects of PTH on the proliferation of SCAPs were determined by Cell Counting Kit-8 (CCK-8), flow cytometry (FCM), and EdU. Alkaline phosphatase (ALP) activity, alizarin red staining, Western blot, and RT-PCR were carried out to detect the odonto/osteogenic differentiation of PTH-treated SCAPs as well as the participation of the MAPK signaling pathway. RESULTS: An ALP activity assay determined that 10-8 mol/L PTH was the optimal concentration for the induction of SCAPs with no significant influence on the proliferation of SCAPs as indicated by CCK-8, FCM, and EdU. The expression of odonto/osteogenic markers was significantly upregulated in mRNA levels and protein levels. Moreover, intermittent treatment of PTH also increased phosphorylation of JNK and P38, and the differentiation was suppressed following the inhibition of JNK and P38 MAPK pathways. CONCLUSION: PTH can regulate the odonto/osteogenic differentiation of SCAPs via JNK and P38 MAPK pathways.

2.
Exp Cell Res ; 384(1): 111593, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31487508

RESUMEN

INTRODUCTION: Periodontal ligament stem cells (PDLSCs) are vital for the regeneration of periodontal tissues. Potassium dihydrogen phosphate (KH2PO4) has recently been applied as a component of the mineralization inducing medium (MM), which can be used to induce osteogenic differentiation of dental stem cells. However, whether KH2PO4 has effects on PDLSCs has not been studied. MATERIALS AND METHODS: PDLSCs were isolated by magnetic activated cell sorting and cultured. Alkaline phosphatase (ALP) activity and ALP protein expression of PDLSCs treated with different concentrations of KH2PO4 were examined to make sure the optimal concentration of KH2PO4 for the following experiments. The effects of KH2PO4 on the proliferation and differentiation of PDLSCs were investigated by flow cytometry, cell counting kit-8 assay, alizarin red staining, real-time RT-PCR, and Western blot. The involvement of nuclear factor kappa B (NF-κB) pathway in KH2PO4-treated PDLSCs was analyzed by Western blot and alizarin red staining. RESULTS: ALP activity assay and ALP protein expression examination revealed that 1.8 mmol/L KH2PO4 was the optimal concentration for the induction of hPDLSCs by KH2PO4. The proliferation and mineralization capacity of PDLSCs treated with KH2PO4 were enhanced as compared with the control group. PDLSCs treated with KH2PO4 showed an improved proliferation capacity in logarithmic growth phase at day 7. As PDLSCs were treated with KH2PO4, the expression of odonto/osteogenic markers (OCN/OCN, DSP/DSPP, OSX/OSX, RUNX2/RUNX2, and ALP/ALP) in cells were up-regulated at day 3 or 7. Moreover, the expression of IκBα in cytoplasm was down-regulated, along with an increased expression of p-P65 in cytoplasm and an up-regulated expression of P65 in nucleus. When treated with BMS345541 (the specific NF-κB inhibitor), the odonto/osteogenic differentiation of KH2PO4-treated PDLSCs was significantly attenuated. CONCLUSION: KH2PO4 can improve the proliferation and odonto/osteogenic differentiation capacity of PDLSCs via NF-κB pathway, and thus represents a potential target involved in the regeneration of periodontium for clinical treatments.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , FN-kappa B/metabolismo , Ligamento Periodontal/efectos de los fármacos , Fosfatos/farmacología , Compuestos de Potasio/farmacología , Transducción de Señal/efectos de los fármacos , Células Madre/efectos de los fármacos , Adolescente , Fosfatasa Alcalina/metabolismo , Biomarcadores/metabolismo , Células Cultivadas , Niño , Humanos , Osteogénesis/efectos de los fármacos , Ligamento Periodontal/metabolismo , Células Madre/metabolismo
3.
Biomed Res Int ; 2019: 9327386, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31179335

RESUMEN

Yunnan Baiyao is a traditional Chinese herbal remedy that has long been used for its characteristics of wound healing, bone regeneration, and anti-inflammation. However, the effects of Yunnan Baiyao on the odonto/osteogenic differentiation of stem cells from apical papilla (SCAPs) and the potential mechanisms remain unclear. The aim of this study was to investigate the odonto/osteogenic differentiation effects of Yunnan Baiyao on SCAPs and the underlying mechanisms involved. SCAPs were isolated and cocultured with Yunnan Baiyao conditioned media. The proliferation ability was determined by cell counting kit 8 and flow cytometry. The differentiation capacity and the involvement of NF-κB pathway were investigated by alkaline phosphatase assay, alizarin red staining, immunofluorescence assay, real-time RT-PCR, and western blot analyses. Yunnan Baiyao conditioned medium at the concentration of 50 µg/mL upregulated alkaline phosphatase activity, induced more mineralized nodules, and increased the expression of odonto/osteogenic genes/proteins (e.g., OCN/OCN, OPN/OPN, OSX/OSX, RUNX2/RUNX2, ALP/ALP, COL-I/COL-I, DMP1, DSP/DSPP) of SCAPs. In addition, the expression of cytoplasmic phos-IκBα, phos-P65, and nuclear P65 was significantly increased in Yunnan Baiyao conditioned medium treated SCAPs in a time-dependent manner. Conversely, the differentiation of Yunnan Baiyao conditioned medium treated SCAPs was obviously inhibited when these stem cells were cocultured with the specific NF-κB inhibitor BMS345541. Yunnan Baiyao can promote the odonto/osteogenic differentiation of SCAPs via the NF-κB signaling pathway.


Asunto(s)
Papila Dental/metabolismo , Medicamentos Herbarios Chinos/farmacología , FN-kappa B/metabolismo , Odontogénesis/efectos de los fármacos , Osteogénesis/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Células Madre/metabolismo , Adolescente , Adulto , Medios de Cultivo Condicionados/farmacología , Papila Dental/citología , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Masculino , Células Madre/citología
4.
Cell Prolif ; 51(6): e12485, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30069950

RESUMEN

OBJECTIVES: Oestrogen receptor (ER) is a common nucleus receptor that is essential for the regulation of cell growth, proliferation and differentiation. This study was to examine whether ERα can affect the proliferation and odonto/osteogenic differentiation of stem cells from apical papilla (SCAPs). MATERIALS AND METHODS: Stem cells from apical papillas were isolated, purified and then transfected with ERα lentiviruses. The proliferation capacity was investigated by cell counting kit-8 (CCK-8) assay and flow cytometry. The odonto/osteogenic differentiation ability was analysed by alkaline phosphatase (ALP) activity, alizarin red staining, western blot assay (WB) and real-time RT-PCR. MAPK pathway and its downstream transcriptional factors were explored by WB assay. RESULTS: As indicated by CCK-8 assay and flow cytometry, ERα had no significant effect on the proliferation of SCAPs. When ERα was overexpressed, the ALP activity and the formation of calcified nodules were significantly enhanced in SCAPs. Moreover, the odonto/osteogenic markers (DMP1/DMP1, DSPP/DSP, RUNX2/RUNX2, OCN/OCN) in SCAPs were significantly up-regulated at both mRNA and protein levels. On the contrary, the odonto/osteogenic differentiation ability of SCAPs was remarkably inhibited after suppression of ERα. Mechanistically, the protein levels of phosphorylated ERK and JNK significantly increased after ERα overexpression. Moreover, some downstream transcriptional factors of MAPK pathway were simultaneously activated by ERα overexpression. CONCLUSIONS: Together, the data accumulated here indicated that ERα can enhance the odonto/osteogenic differentiation of SCAPs via ERK and JNK MAPK pathways.


Asunto(s)
Diferenciación Celular/genética , Proliferación Celular/genética , Receptor alfa de Estrógeno/genética , Células Madre/citología , Células Cultivadas , Papila Dental/citología , Receptor alfa de Estrógeno/metabolismo , Humanos , Sistema de Señalización de MAP Quinasas/fisiología , FN-kappa B/metabolismo , Osteogénesis/genética
5.
J Cell Biochem ; 119(8): 6545-6554, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29384216

RESUMEN

MicroRNA let-7 family acts as the key regulator of the differentiation of mesenchymal stem cells (MSCs). However, the influence of let-7b on biological characteristics of stem cells from apical papilla (SCAPs) is still controversial. In this study, the expression of hsa-let-7b was obviously downregulated during the osteogenic differentiation of SCAPs. SCAPs were then infected with hsa-let-7b or hsa-let-7b inhibitor lentiviruses. The proliferation ability was determined by CCK-8 and flow cytometry. The odonto/osteogenic differentiation capacity was analyzed by alkaline phosphatase (ALP) activity, alizarin red staining, Western blot assay, and real-time RT-PCR. Bioinformatics analysis was used to screen out the target of hsa-let-7b and the target relationship was confirmed by dual luciferase reporter assay. Hsa-let-7b was of no influence on the proliferation of SCAPs. Interferential expression of hsa-let-7b increased the ALP activity as well as the formation of calcified nodules of SCAPs. Moreover, the mRNA levels of osteoblastic markers (ALP, RUNX2, OSX, OPN, and OCN) were upregulated while the protein levels of DSPP, ALP, RUNX2, OSX, OPN, and OCN also increased considerably. Conversely, overexpression of hsa-let-7b inhibited the odonto/osteogenic differentiation capacity of SCAPs. Bioinformatics analysis revealed a putative binding site of hsa-let-7b in the matrix metalloproteinase 1 (MMP1) 3'-untranslated region (3'-UTR). Dual luciferase reporter assay confirmed that hsa-let-7b targets MMP1. The odonto/osteogenic differentiation ability of SCAPs ascended after repression of hsa-let-7b, which was then reversed after co-transfection with siMMP1. Together, hsa-let-7b can suppress the odonto/osteogenic differentiation capacity of SCAPs by targeting MMP1.


Asunto(s)
Diferenciación Celular , Papila Dental/metabolismo , Metaloproteinasa 1 de la Matriz/biosíntesis , MicroARNs/biosíntesis , Odontogénesis , Osteogénesis , Células Madre/metabolismo , Adolescente , Adulto , Antígenos de Diferenciación/biosíntesis , Antígenos de Diferenciación/genética , Papila Dental/citología , Femenino , Humanos , Masculino , Metaloproteinasa 1 de la Matriz/genética , MicroARNs/genética , Células Madre/citología
6.
J Cell Physiol ; 233(3): 2386-2397, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28749049

RESUMEN

Mineral trioxide aggregate (MTA), as a bioactive material, has a widespread application in clinical practice. To date, the effects of MTA on the proliferation and differentiation of human periodontal ligament stem cells (hPDLSCs) remain unclear. hPDLSCs were isolated from human periodontal ligament tissues and cultured with MTA conditioned media. Cell counting kit-8 (CCK-8) assay was performed to assess the proliferation capacity of MTA-treated hPDLSCs. Immunofluorescence assay, alkaline phosphatase (ALP) activity, alizarin red staining, real-time RT-PCR, and western blot analyses were used to investigate the odonto/osteogenic capacity of hPDLSCs as well as the involvement of NF-κB and MAPK pathways. ALP activity assay revealed that 2 mg/ml was the optimal concentration for the induction of hPDLSCs by MTA. The protein expression of DSP, RUNX2, OCN, OSX, OPN, DMP1, ALP, and COL-I in MTA-treated hPDLSCs was significantly higher than those in control group (p < 0.01). When hPDLSCs were treated with the inhibitors of NF-κB and MAPK pathways (U0126, SP600125, SB203580, and BMS345541), the effects of MTA on the differentiation of hPDLSCs were suppressed. Mechanistically, P65 was detected to transfer from cytoplasm to nuclei, as indicated by western blot and immunofluorescence assay. Moreover, MAPK-related proteins and its downstream transcription factors were also upregulated in MTA-treated hPDLSCs. Together, mineral trioxide aggregate can promote the odonto/osteogenic capacity of hPDLSCs via activating the NF-κB and MAPK pathways.


Asunto(s)
Compuestos de Aluminio/farmacología , Compuestos de Calcio/farmacología , Diferenciación Celular/efectos de los fármacos , Proteínas Quinasas Activadas por Mitógenos/metabolismo , FN-kappa B/metabolismo , Osteogénesis/efectos de los fármacos , Óxidos/farmacología , Ligamento Periodontal/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Silicatos/farmacología , Células Madre/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Relación Dosis-Respuesta a Droga , Combinación de Medicamentos , Regulación de la Expresión Génica , Humanos , Ligamento Periodontal/enzimología , Células Madre/enzimología , Factores de Tiempo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
7.
Sci Rep ; 6: 36922, 2016 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-27833148

RESUMEN

Insulin-like growth factor-1 (IGF-1) and its receptor IGF-1R play a paramount role in tooth/bone formation while hsa-let-7c actively participates in the osteogenic differentiation of mesenchymal stem cells. However, the interaction between IGF-1/IGF-1R and hsa-let-7c on the committed differentiation of stem cells from apical papilla (SCAPs) remains unclear. In this study, human SCAPs were isolated and treated with IGF-1 and hsa-let-7c over/low-expression viruses. The odonto/osteogenic differentiation of these stem cells and the involvement of mitogen-activated protein kinase (MAPK) pathway were subsequently investigated. Alizarin red staining showed that hsa-let-7c low-expression can significantly promote the mineralization of IGF-1 treated SCAPs, while hsa-let-7c over-expression can decrease the calcium deposition of IGF-1 treated SCAPs. Western blot assay and real-time reverse transcription polymerase chain reaction further demonstrated that the expression of odonto/osteogenic markers (ALP, RUNX2/RUNX2, OSX/OSX, OCN/OCN, COL-I/COL-I, DSPP/DSP, and DMP-1/DMP-1) in IGF-1 treated SCAPs were significantly upregulated in Let-7c-low group. On the contrary, hsa-let-7c over-expression could downregulate the expression of these odonto/osteogenic markers. Moreover, western blot assay showed that the JNK and p38 MAPK signaling pathways were activated in Let-7c-low SCAPs but inhibited in Let-7c-over SCAPs. Together, the IGF-1/IGF-1R/hsa-let-7c axis can control the odonto/osteogenic differentiation of IGF-1-treated SCAPs via the regulation of JNK and p38 MAPK signaling pathways.


Asunto(s)
Papila Dental/citología , Factor I del Crecimiento Similar a la Insulina/genética , MicroARNs/genética , Receptores de Somatomedina/genética , Células Madre/citología , Adolescente , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Papila Dental/metabolismo , Humanos , Factor I del Crecimiento Similar a la Insulina/metabolismo , Sistema de Señalización de MAP Quinasas , Odontogénesis , Osteogénesis , Receptor IGF Tipo 1 , Receptores de Somatomedina/metabolismo , Células Madre/metabolismo , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...