Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Biochem Mol Toxicol ; 38(6): e23745, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38769715

RESUMEN

Extensive use of heavy metals has posed a serious concern for ecosystem and human too. Heavy metals are toxic in nature and their accumulation in human body causes serious disorders such as neurological disease, cardiac disease, gastrointestinal problems, skin disorders, reproductive disease, lungs diseases, and so on. Furthermore, heavy metals not only affect the human health but also have a negative impact on the economy. In the current review, we have elaborated the impact of heavy metal exposure on human health and socioeconomics. We have discussed the molecular mechanism involved in the heavy metal-induced human disorders such as oxidative stress, neuroinflammation, and protein misfolding. Finally, we discussed the preventive measure and treatment strategy that could counter the negative effects of heavy metal intoxications. In conclusion, there is a substantial correlation between heavy metals and the onset and advancement of several health issues. Chelation treatment could be a useful tactic to lessen the toxic metal load and the difficulties that come with it.


Asunto(s)
Metales Pesados , Humanos , Metales Pesados/toxicidad , Exposición a Riesgos Ambientales/efectos adversos , Estrés Oxidativo/efectos de los fármacos , Animales , Intoxicación por Metales Pesados/diagnóstico , Intoxicación por Metales Pesados/prevención & control , Intoxicación por Metales Pesados/terapia
2.
Mol Neurobiol ; 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38809370

RESUMEN

Changes in the transition metal homeostasis in the brain are closely linked with Alzheimer's disease (AD), including intraneuronal iron accumulation and extracellular copper and zinc pooling in the amyloid plague. The brain copper, zinc, and iron surplus are commonly acknowledged characteristics of AD, despite disagreements among some. This has led to the theory that oxidative stress resulting from abnormal homeostasis of these transition metals may be a causative explanation behind AD. In the nervous system, the interaction of metals with proteins appears to be an essential variable in the development or suppression of neurodegeneration. Chelation treatment may be an option for treating neurodegeneration induced by transition metal ion dyshomeostasis. Some clinicians even recommend using chelating agents as an adjunct therapy for AD. The current review also looks at the therapeutic strategies that have been attempted, primarily with metal-chelating drugs. Metal buildup in the nervous system, as reported in the AD, could be the result of compensatory mechanisms designed to improve metal availability for physiological functions.

3.
Biochim Biophys Acta Gen Subj ; 1868(3): 130559, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38191034

RESUMEN

Alzheimer's disease (AD) is a neurodegenerative disorder primarily characterized by ß-amyloid plaque, intraneuronal tangles, significant neuronal loss and cognitive deficit. Treatment in the early stages of the disease is crucial for preventing or perhaps reversing the neurodegeneration in the AD cases. However, none of the current diagnostic procedures are capable of early diagnosis of AD. Further, the available treatments merely provide symptomatic alleviation in AD and do not address the underlying illness. Therefore, there is no permanent cure for AD currently. Better therapeutic outcomes need the optimum drug concentration in the central nervous system (CNS) by traversing blood-brain-barrier (BBB). Nanotechnology offers enormous promise to transform the treatment and diagnostics of neurodegenerative diseases. Nanotechnology based diagnostic tools, drug delivery systems and theragnostic are capable of highly sensitive molecular detection, effective drug targeting and their combination. Significant work has been done in this area over the last decade and prospective results have been obtained in AD therapy. This review explores the various applications of nanotechnology in addressing the varied facets of AD, ranging from early detection to therapeutic interventions. This review also looks at how nanotechnology can help with the development of disease-modifying medicines, such as the delivery of anti-amyloid, anti-tau, cholinesterase inhibitors, antioxidants and hormonal drugs. In conclusion, this paper discusses the role of nanotechnology in the early detection of AD, effective drug targeting to the CNS and theragnostic applications in the management of AD.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/diagnóstico , Enfermedad de Alzheimer/tratamiento farmacológico , Estudios Prospectivos , Nanotecnología , Péptidos beta-Amiloides , Sistemas de Liberación de Medicamentos
4.
Artículo en Inglés | MEDLINE | ID: mdl-37891257

RESUMEN

Infertility is a frequent long-term adverse effect of cancer therapy for children. Compromised testicular functions in adolescence are frequent observations after chemotherapy and there are currently no well-established alternatives to avoid this damage. Antimetabolites such as 6-mercaptopurine (6-MP) are used to treat a variety of cancer; however, its treatment-associated adverse effects on the male reproductive functions are overlooked. Here, the molecular processes underlying 6-MP-induced male germ cell damage in juvenile Sprague-Dawley (SD) rats (3 weeks) have been investigated. Rats were administered with low (5 mg/kg), medium (10 mg/kg), and high (20 mg/kg) doses of 6-MP per orally either singly (1 week × 1 cycle) or intermittently (1 week treatment followed by 1 week remission period × 3 cycles). The toxicity was evaluated in terms of genotoxicity and testes- and sperm-related cellular and molecular parameters. Single cycle of exposure either produced mild or no toxic manifestations at the end of the 6th week. Intermittent cycles of exposure, particularly at the 10 and 20 mg/kg, decreased body and organ weights, increased micronucleated cells in the peripheral blood, induced oxidative/nitrosative stress, altered sperm chromatin quality, reduced serum testosterone and follicle stimulating hormone (FSH) levels, increased testicular structural aberrations, DNA damage, and apoptosis, and upregulated TNF-α expression and downregulated p-AMPK and ß-catenin expressions. Conclusively, intermittent cycles of exposure at 10 and 20 mg/kg doses to the juvenile rats significantly induced oxidative stress, genotoxicity, and cellular and molecular perturbations in the testes and sperm of adult rats.

5.
Curr Diabetes Rev ; 2023 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-37608613

RESUMEN

Type 1 diabetes mellitus is a major metabolic disorder that affects people of all age groups throughout the world. It is responsible for the alterations in male gonadal physiology in experimental models as well as in clinical cases. On the other side, diabetes mellitus has also been associated with perturbations in the gut physiology and microbiota dysbiosis. The accumulating evidence suggests a link between the gut and gonad as evident from the i) experimental data providing insights into type 1 diabetes mellitus induced gut perturbations, ii) link of gut physiology with alterations of testicular health, iii) role of gut microbiota in androgen metabolism in the intestine, and iv) epidemiological evidence linking type 1 diabetes mellitus with inflammatory bowel disease and male infertility. Considering all the pieces of evidence, it is summarized that gut dysbiosis, oxidative stress, inflammation and energy dys-balance are the prime factors involved in the gonadal damage under type 1 diabetes mellitus, in which the gut contributes significantly. Identification of novel biomarkers and intervention of suitable agents targeting these prime factors may be a step forward to restore the gonadal damage in diabetic conditions.

6.
J Biochem Mol Toxicol ; 37(8): e23374, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37086025

RESUMEN

The success of chemotherapy regimens has led to an increase in cancer survival rate over the last decades. Melphalan has been widely used for the treatment of several types of cancers despite its gonadotoxic effects. Due to its ability to cause mutations in the spermatogonial stem cells and spermatids, melphalan can exert a negative impact on male reproductive health in young cancer survivors. ß-aminoisobutyric acid (BAIBA), a myokine released by skeletal muscles, has been reported to have beneficial effects in diabetic nephropathy, cardiomyopathy and hepatic toxicity. However, the exact role of BAIBA in chemotherapy-induced germ cell toxicity is still unexplored. The present study aims to determine the dose-dependent (25, 50, and 100 mg/kg) effects of BAIBA on melphalan-induced (1.5 mg/kg) germ cell toxicity in sprague-dawley (SD) rats. The evaluation parameters included quantification of oxidative stress biomarkers, sperm count, sperm motility and head morphology, sperm and testicular DNA damage, sperm mitochondrial membrane potential, ultrastructural changes in sperms, histological and protein expression studies in testes. Melphalan treatment significantly altered all the above-mentioned parameters and the high dose (100 mg/kg) of BAIBA restored melphalan-induced toxicity in a significant manner by exerting antioxidant, anti-inflammatory and antiapoptotic effects. However, the medium dose (50 mg/kg) of BAIBA decreased the toxicity of melphalan and the low dose (25 mg/kg) of BAIBA failed to counteract the melphalan-induced male germ cell toxicity as well as the peripheral blood micronucleus induction. The antioxidant, anti-inflammatory and antiapoptotic role of BAIBA in melphalan-induced gonadal damage is a novel finding in an experimental rat model.


Asunto(s)
Antioxidantes , Melfalán , Ratas , Masculino , Animales , Melfalán/toxicidad , Antioxidantes/farmacología , Motilidad Espermática , Semen , Células Germinativas , Inflamación/inducido químicamente , Ratas Sprague-Dawley , Estrés Oxidativo , Testículo , Apoptosis
7.
Chem Res Toxicol ; 35(10): 1701-1719, 2022 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-35972774

RESUMEN

Arsenic, a metalloid, is known to cause deleterious effects in various body organs, particularly the liver, urinary bladder, and brain, and these effects are primarily mediated through oxidative stress. Chelation therapy has been considered one of the promising medical treatments for arsenic poisoning. Meso 2,3- dimercaptosuccinic acid (DMSA) has been recognized as one of the most effective chelating drugs to treat arsenic poisoning. However, the drug is compromised with a number of shortcomings, including the inability to treat chronic arsenic poisoning due to its extracellular distribution. Monoisoamyl 2,3-dimercaptosuccinic acid, one of the analogues of meso 2,3-dimeraptosuccinic acid (DMSA), is a lipophilic chelator and has shown promise to be considered as a potential future chelating agent/antidote not only for arsenic but also for a few other heavy metals like lead, mercury, cadmium, and gallium arsenide. The results from numerous studies carried out in the recent past, mainly from our group, strongly support the clinical application of MiADMSA. This review paper summarizes most of the scientific details including the chemistry, pharmacology, and safety profile of MiADMSA. The efficacy of MiADMSA mainly against arsenic toxicity but also a few other heavy metals was also discussed. We also reviewed a few other strategies in order to achieve the optimum effects of MiADMSA, like combination therapy using two chelating agents or coadministration of a natural and synthetic antioxidant (including phytomedicine) along with MiADMSA for treatment of metal/metalloid poisoning. We also briefly discussed the use of nanotechnology (nano form of MiADMSA i.e. nano-MiADMSA) and compared it with bulk MiADMSA. All these strategies have been shown to be beneficial in getting more pronounced therapeutic efficacy of MiADMSA, as an adjuvant or as a complementary agent, by significantly increasing the chelating efficacy of MiADMSA.


Asunto(s)
Intoxicación por Arsénico , Arsénico , Mercurio , Animales , Antídotos , Antioxidantes/uso terapéutico , Intoxicación por Arsénico/tratamiento farmacológico , Cadmio , Quelantes/farmacología , Quelantes/uso terapéutico , Intoxicación por Metales Pesados/tratamiento farmacológico , Ratas , Ratas Wistar , Succímero/análogos & derivados , Succímero/farmacología , Succímero/uso terapéutico
8.
Reprod Toxicol ; 113: 71-84, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35961530

RESUMEN

Melphalan significantly contributes to the increase in childhood cancer survival rate. It acts as a gonadotoxic agent and leads to testes damage, dysbalance in gonadal hormones, and impairment in the germ cell proliferation. Therefore, it might be a potent threat to male fertility in individuals who have undergone melphalan treatment during childhood cancer. However, the molecular mechanisms of melphalan-induced gonadal damage are not yet fully explored and they need to be investigated to determine the benefit-risk profile. In the present study, juvenile male SD rats were subjected to single and intermittent cycles of melphalan exposure in a dose-dependent (0.375, 0.75 and 1.5 mg/kg) manner. Methods of end-points evaluations were quantification of micronuclei formation in peripheral blood, sperm count, sperm motility and head morphology, sperm and testicular DNA damage, histological studies in testes, oxidative/nitrosative stress parameters. A single cycle of exposure at high dose (1.5 mg/kg) produced significant effect on micronuclei formation only after the first week of exposure, whereas failed to produce significant effect at the end of the sixth week. Intermittent cycles of exposure at the dose of 1.5 mg/kg produced significant alterations in all the parameters (micronuclei in peripheral blood, testes and epididymides weight and length, MDA, GSH and nitrite levels, sperm count and motility, sperm head morphology, testicular and sperm DNA damage, protein expression in testes and histological parameters). So, time of exposure as well as the amount of exposure (total dosage administered) is critical in determining the magnitude of the damage in germ cell risk assessment.


Asunto(s)
Melfalán , Motilidad Espermática , Animales , Células Germinativas/metabolismo , Masculino , Melfalán/metabolismo , Melfalán/toxicidad , Nitritos/metabolismo , Estrés Oxidativo , Ratas , Ratas Sprague-Dawley , Medición de Riesgo , Semen/metabolismo , Recuento de Espermatozoides , Espermatozoides , Testículo
9.
Front Neurosci ; 14: 494, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32581676

RESUMEN

Central nervous system (CNS) disorders especially neurodegenerative disorders are the major challenge for public health and demand the great attention of researchers to protect people against them. In past few decades, different treatment strategies have been adopted, but their therapeutic efficacy are not enough and have only shown partial mitigation of symptoms. Blood-brain barrier (BBB) and blood-cerebrospinal fluid barrier (BSCFB) guard the CNS from harmful substances and pose as the major challenges in delivering drugs into CNS for treatment of CNS complications such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), stroke, epilepsy, brain tumors, multiple sclerosis (MS), and encephalitis, etc. Nanotechnology has come out as an exciting and promising new platform of treating neurological disorders and has shown great potential to overcome problems related to the conventional treatment approaches. Molecules can be nanoengineered to carry out multiple specific functions such as to cross the BBB, target specific cell or signaling pathway, respond to endogenous stimuli, and act as a vehicle for gene delivery, support nerve regeneration and cell survival. In present review, the role of nanocarrier systems such as liposomes, micelles, solid lipid nanoparticles (SLNPs), dendrimers, and nanoemulsions for delivery of various neurotherapeutic agents has been discussed, besides this, their mechanism of action, and nanoformulation of different neuroprotective agents like curcumin, edaravone, nerve growth factors in CNS disorders like Alzheimer's, Parkinsonism, epilepsy, stroke, and brain tumors has been reviewed.

10.
Heliyon ; 6(2): e03431, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32149198

RESUMEN

Arsenic (As) is naturally occurring toxic metalloid which is considered as a serious environmental and health concern. Red blood cells are the prime target for any toxicants as their population is higher in systemic circulation. High prevalence of anaemia too has been reported from arsenic contaminated area, suggesting possible linkage between arsenic and the damaging effects on RBCs. The exact mechanism for these effects is still not clear, however, oxidative/nitrosative stress might be one of the causative factors to play a key role. The present study was planned to evaluate the protective effects of a metal chelator, MiADMSA either alone or in combination with a natural antioxidant (gallic acid) for the reversal of arsenic induced oxidative damage in red blood cells. We collected rat RBCs and cultured them in appropriate medium. They were incubated with MiADMSA and gallic acid and then treated with sodium arsenite at 37 °C. Hemolysates were prepared and assayed for various biochemical parameters such as oxidative/nitrosative variables, osmotic fragility, acetylcholinesterase activity, and cellular metal accumulation. We found there was reversibility of oxidative/nitrosative stress variables, elevated cellular antioxidant power, and decreased osmotic fragility of red blood cells both in MiADMSA alone as well as in combination with gallic acid treated group compared with arsenic treated group. In conclusion, MiADMSA efficiently participated in the reversal of arsenic induced oxidative/nitrosative damage in red blood cells where as Gallic acid improved its reversal when given in combination with MiADMSA.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...