Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Ecotoxicology ; 29(7): 1105, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32417988

RESUMEN

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

2.
Ann Work Expo Health ; 63(9): 990-1003, 2019 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-31580409

RESUMEN

Hospital technician surgical smoke exposures during several types of electrocautery-based procedures were evaluated. Personal and area air sampling was performed for 106 individual analytes including ultrafine particulate matter (UFP), volatile organic compounds, polycyclic aromatic hydrocarbons, phenol, aldehydes, carbon monoxide, hydrogen sulfide, and hydrogen cyanide. Acetone, d-limonene, ethanol, ethyl acetate, and fluorene were measured in surgical suites at concentrations 1.1- to 3.7-fold higher than those observed in background. Benzene, α-pinene, methylene chloride, and n-hexane were measured in the absence of a detectable background concentration. All analytes were measured at concentrations that were <1% of the corresponding US federal and state 8-h permissible exposure limits (PELs), if PELs existed. Full-shift average UFP concentrations ranged from 773 to 2257 particles/cm3, approximately one order of magnitude higher than surgical suite background concentrations. A comparison of two breast reduction procedures suggested that the use of smoke evacuators reduced UFP exposure by 6-fold. We concluded that selection and evaluation of key hazards, particularly UFP, under a variety of experimental conditions would be beneficial to elucidate potential health effects and causes osf employee complaints. Recommendations for successful sampling campaigns in future surgical smoke occupational exposure studies are provided. We also recommend the continued use of engineering controls, local exhaust ventilation, and surgical N95 respirators to reduce personal exposures to UFP in surgical smoke.


Asunto(s)
Contaminantes Atmosféricos/análisis , Contaminación del Aire Interior/análisis , Electrocoagulación , Exposición Profesional/análisis , Humo/análisis , Humanos , Material Particulado/análisis , Proyectos Piloto , Hidrocarburos Policíclicos Aromáticos/análisis , Ventilación , Compuestos Orgánicos Volátiles/análisis
3.
J Occup Environ Hyg ; 16(6): 410-421, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31084474

RESUMEN

The objective of this study was to characterize worker exposure to airborne metal and particulate matter in shops where multiple types of metalworking tasks were performed. The sampling strategy included full-shift and task-based personal samples on workers who performed flux-cored arc welding, personal samples on workers performing non-welding metalworking tasks, and area samples near welders, representing bystanders to welding. Size-fractionated particulate matter adjacent to welding activities was measured using real-time monitoring devices. Samples were analyzed for 21 individual metals, of which 8 were frequently detected. Exceedance fractions were calculated based on the distribution of results for each frequently detected metal. Exceedance fractions were <5% for all metals, except manganese (6% of the REL, 55% of the inhalable TLV-TWA and 91% of the respirable TLV-TWA) and iron oxide (10% of the REL and TLV-TWA) for Shop 1 bystander samples, manganese (68% for the inhalable TLV-TWA and 98% of the respirable TLV-TWA) for welder samples, and manganese (35% for the inhalable TLV-TWA and 80% of the respirable TLV-TWA) and iron oxide (12% for the PEL and 23% for the REL and TLV-TWA) for metalworker samples. Particulate matter concentrations measured at distances of 0.9-1.5 m and 2.1-2.7 m from the welder were within the same order of magnitude. The results of this study allow for comparison to health-based exposure limits for select individual components of welding fume with a low to medium degree of censorship.


Asunto(s)
Metales/análisis , Exposición Profesional/análisis , Material Particulado/análisis , Soldadura , Contaminantes Ocupacionales del Aire/análisis , Monitoreo del Ambiente/métodos , Compuestos Férricos/análisis , Humanos , Exposición por Inhalación/análisis , Manganeso/análisis , Metalurgia , Pennsylvania
4.
Toxicol Ind Health ; 33(3): 193-210, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26862134

RESUMEN

Workplace air samples analyzed for benzene at four US refineries from 1976 to 2007 were pooled into a single dataset to characterize similarities and differences between job titles, tasks and refineries, and to provide a robust dataset for exposure reconstruction. Approximately 12,000 non-task (>180 min) personal samples associated with 50 job titles and 4000 task (<180 min) samples characterizing 24 tasks were evaluated. Personal air sample data from four individual refineries were pooled based on a number of factors including (1) the consistent sampling approach used by refinery industrial hygienists over time, (2) the use of similar exposure controls, (3) the comparability of benzene content of process streams and end products, (4) the ability to assign uniform job titles and task codes across all four refineries, and (5) our analysis of variance (ANOVA) of the distribution of benzene air concentrations for select jobs/tasks across all four refineries. The jobs and tasks most frequently sampled included those with highest potential contact with refinery product streams containing benzene, which reflected the targeted sampling approach utilized by the facility industrial hygienists. Task and non-task data were analyzed to identify and account for significant differences within job-area, task-job, and task-area categories. This analysis demonstrated that in general, areas with benzene containing process streams were associated with greater benzene air concentrations compared to areas with process streams containing little to no benzene. For several job titles and tasks analyzed, there was a statistically significant decrease in benzene air concentration after 1990. This study provides a job and task-focused analysis of occupational exposure to benzene during refinery operations, and it should be useful for reconstructing refinery workers' exposures to benzene over the past 30 years.


Asunto(s)
Contaminantes Ocupacionales del Aire/toxicidad , Contaminación del Aire/prevención & control , Benceno/toxicidad , Exposición por Inhalación/efectos adversos , Exposición Profesional/efectos adversos , Industria del Petróleo y Gas , Adulto , Análisis de Varianza , Bases de Datos Factuales , Empleo/clasificación , Empleo/tendencias , Monitoreo del Ambiente , Humanos , Illinois , Exposición por Inhalación/prevención & control , Louisiana , Exposición Profesional/prevención & control , Salud Laboral/tendencias , Ocupaciones/clasificación , Ocupaciones/tendencias , Industria del Petróleo y Gas/tendencias , Análisis Espacio-Temporal , Texas , Factores de Tiempo , Trabajo/clasificación , Trabajo/tendencias , Recursos Humanos
5.
Environ Monit Assess ; 188(7): 410, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27312253

RESUMEN

A 3-month air monitoring study was conducted in Washington County, Pennsylvania, at the request of local community members regarding the potential risks resulting from air emissions of pollutants related to hydraulic fracturing operations. Continuous air monitoring for total volatile organic compounds was performed at two sampling sites, including a school and a residence, located within 900 m of a hydraulic fracturing well pad that had been drilled prior to the study. Intermittent 24-hour air samples for 62 individual volatile organic compounds were also collected. The ambient air at both sites was monitored during four distinct periods of unconventional natural gas extraction activity: an inactive period prior to fracturing operations, during fracturing operations, during flaring operations, and during another inactive period after operations. The results of the continuous monitoring during fracturing and flaring sampling periods for total volatile organic compounds were similar to the results obtained during inactive periods. Total volatile organic compound 24-hour average concentrations ranged between 0.16 and 80 ppb during all sampling periods. Several individual volatile compounds were detected in the 24-hour samples, but they were consistent with background atmospheric levels measured previously at nearby sampling sites and in other areas in Washington County. Furthermore, a basic yet conservative screening level evaluation demonstrated that the detected volatile organic compounds were well below health-protective levels. The primary finding of this study was that the operation of a hydraulic fracturing well pad in Washington County did not substantially affect local air concentrations of total and individual volatile organic compounds.


Asunto(s)
Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente/métodos , Fracking Hidráulico , Compuestos Orgánicos Volátiles/análisis , Pennsylvania
6.
Sci Total Environ ; 533: 476-87, 2015 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-26184905

RESUMEN

Automobile tires require functional rubber additives including curing agents and antioxidants, which are potentially environmentally available from tire and road wear particles (TRWP) deposited in soil and sediment. A novel methodology was employed to evaluate the environmental fate of three commonly-used tire chemicals (N-cyclohexylbenzothiazole-2-sulfenamide (CBS), N-(1,3-dimethylbutyl)-N'-phenyl-1,4-phenylenediamine (6-PPD) and 1,3-diphenylguanidine (DPG)), using a road simulator, an artificial weathering chamber, column leaching tests, and OECD 308 sediment/water incubator studies. Environmental release factors were quantified for curing (f(C)), tire wear (f(W)), terrestrial weathering (f(S)), leaching from TRWP (f(L)), and environmental availability from TRWP (f(A)) by liquid chromatography-tandem mass spectroscopy (LC/MS/MS) analyses. Cumulative fractions representing total environmental availability (F(T)) and release to water (FR) were calculated for the tire chemicals and 13 transformation products. F(T) for CBS, DPG and 6-PPD inclusive of transformation products for an accelerated terrestrial aging time in soil of 0.1 years was 0.08, 0.1, and 0.06, respectively (equivalent to 6 to 10% of formulated mass). In contrast, a wider range of 5.5×10(-4) (6-PPD) to 0.06 (CBS) was observed for F(R) at an accelerated age of 0.1 years, reflecting the importance of hydrophobicity and solubility for determining the release to the water phase. Significant differences (p<0.05) in the weathering factor, f(S), were observed when chemicals were categorized by boiling point or hydrolysis rate constant. A significant difference in the leaching factor, f(L), and environmental availability factor, f(A), was also observed when chemicals were categorized by log K(ow). Our methodology should be useful for lifecycle analysis of other functional polymer chemicals.


Asunto(s)
Modelos Químicos , Compuestos Orgánicos/análisis , Polímeros/química , Contaminantes del Agua/análisis , Sedimentos Geológicos/química , Organización para la Cooperación y el Desarrollo Económico , Material Particulado/análisis , Espectrometría de Masas en Tándem , Agua
7.
Ann Occup Hyg ; 59(9): 1122-34, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26209596

RESUMEN

Current recommendations for nanomaterial-specific exposure assessment require adaptation in order to be applied to complicated manufacturing settings, where a variety of particle types may contribute to the potential exposure. The purpose of this work was to evaluate a method that would allow for exposure assessment of nanostructured materials by chemical composition and size in a mixed dust setting, using carbon black (CB) and amorphous silica (AS) from tire manufacturing as an example. This method combined air sampling with a low pressure cascade impactor with analysis of elemental composition by size to quantitatively assess potential exposures in the workplace. This method was first pilot-tested in one tire manufacturing facility; air samples were collected with a Dekati Low Pressure Impactor (DLPI) during mixing where either CB or AS were used as the primary filler. Air samples were analyzed via scanning transmission electron microscopy (STEM) coupled with energy dispersive spectroscopy (EDS) to identify what fraction of particles were CB, AS, or 'other'. From this pilot study, it was determined that ~95% of all nanoscale particles were identified as CB or AS. Subsequent samples were collected with the Dekati Electrical Low Pressure Impactor (ELPI) at two tire manufacturing facilities and analyzed using the same methodology to quantify exposure to these materials. This analysis confirmed that CB and AS were the predominant nanoscale particle types in the mixing area at both facilities. Air concentrations of CB and AS ranged from ~8900 to 77600 and 400 to 22200 particles cm(-3), respectively. This method offers the potential to provide quantitative estimates of worker exposure to nanoparticles of specific materials in a mixed dust environment. With pending development of occupational exposure limits for nanomaterials, this methodology will allow occupational health and safety practitioners to estimate worker exposures to specific materials, even in scenarios where many particle types are present.


Asunto(s)
Contaminantes Ocupacionales del Aire/análisis , Polvo/análisis , Monitoreo del Ambiente/métodos , Industria Manufacturera , Nanopartículas/análisis , Exposición Profesional/análisis , Humanos , Exposición por Inhalación/análisis , Microscopía Electrónica de Transmisión de Rastreo , Salud Laboral , Tamaño de la Partícula , Proyectos Piloto , Goma/análisis , Dióxido de Silicio/análisis , Hollín/análisis
10.
Environ Sci Technol ; 47(15): 8138-47, 2013 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-23841521

RESUMEN

Impacts of surface runoff to aquatic species are an ongoing area of concern. Tire and road wear particles (TRWP) are a constituent of runoff, and determining accurate TRWP concentrations in sediment is necessary in order to evaluate the likelihood that these particles present a risk to the aquatic environment. TRWP consist of approximately equal mass fractions of tire tread rubber and road surface mineral encrustations. Sampling was completed in the Seine (France), Chesapeake (U.S.), and Yodo-Lake Biwa (Japan) watersheds to quantify TRWP in the surficial sediment of watersheds characterized by a wide diversity of population densities and land uses. By using a novel quantitative pyrolysis-GC/MS analysis for rubber polymer, we detected TRWP in 97% of the 149 sediment samples collected. The mean concentrations of TRWP were 4500 (n = 49; range = 62-11 600), 910 (n = 50; range = 50-4400) and 770 (n = 50; range = 26-4600) µg/g d.w. for the characterized portions of the Seine, Chesapeake and Yodo-Lake Biwa watersheds, respectively. A subset of samples from the watersheds (n = 45) was pooled to evaluate TRWP metals, grain size and organic carbon correlations by principal components analysis (PCA), which indicated that four components explain 90% of the variance. The PCA components appeared to correspond to (1) metal alloys possibly from brake wear (primarily Cu, Pb, Zn), (2) crustal minerals (primarily Al, V, Fe), (3) metals mediated by microbial immobilization (primarily Co, Mn, Fe with TOC), and (4) TRWP and other particulate deposition (primarily TRWP with grain size and TOC). This study should provide useful information for assessing potential aquatic effects related to tire service life.


Asunto(s)
Cromatografía de Gases y Espectrometría de Masas/métodos , Sedimentos Geológicos/química , Material Particulado/análisis , Francia , Japón , Análisis de Componente Principal , Incertidumbre , Estados Unidos
11.
J Air Waste Manag Assoc ; 63(4): 424-32, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23687727

RESUMEN

UNLABELLED: Concerns have arisen among the public regarding the potentialfor drinking-water contamination from the migration of methane gas and hazardous chemicals associated with hydraulic fracturing and horizontal drilling. However, little attention has been paid to the potentialfor groundwater contamination resulting from surface spills from storage and production facilities at active well sites. We performed a search for publically available data regarding groundwater contamination from spills at ULS. drilling sites. The Colorado Oil and Gas Conservation Commission (COGCC) database was selected for further analysis because it was the most detailed. The majority ofspills were in Weld County, Colorado, which has the highest density of wells that used hydraulic fracturing for completion, many producing both methane gas and crude oil. We analyzed publically available data reported by operators to the COGCC regarding surface spills that impacted groundwater From July 2010 to July 2011, we noted 77 reported surface spills impacting the groundwater in Weld County, which resulted in surface spills associated with less than 0.5% of the active wells. The reported data included groundwater samples that were analyzed for benzene, toluene, ethylbenzene, andxylene (BTEX) components of crude oil. For groundwater samples taken both within the spill excavation area and on the first reported date of sampling, the BTEX measurements exceeded National Drinking Water maximum contaminant levels (MCLs) in 90, 30, 12, and 8% of the samples, respectively. However, actions taken to remediate the spills were effective at reducing BJTEX levels, with at least 84% of the spills reportedly achieving remediation as of May 2012. Our analysis demonstrates that surface spills are an important route of potential groundwater contamination from hydraulic fracturing activities and should be a focus of programs to protect groundwater IMPLICATIONS: While benzene can occur naturally in groundwater sources, spills and migration of chemicals used for hydraulic fracturing activities have recently been thought to be a main source of benzene contamination in groundwater. However, there is little scientific literature to support that claim. Therefore, we accessed a publically available database and tracked the number of reported surface spills with potential groundwater impact over a 1-year period. Although the number of surface spills was minimal, our analysis provides scientific evidence that benzene can contaminate groundwater sources following surface spills at active well sites.


Asunto(s)
Derivados del Benceno/química , Benceno/química , Agua Subterránea/química , Tolueno/química , Contaminantes Químicos del Agua/química , Xilenos/química , Monitoreo del Ambiente , Industria Procesadora y de Extracción , Residuos Industriales
12.
Ecotoxicology ; 22(1): 13-21, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23001428

RESUMEN

Tire and road wear particles (TRWP) consist of a complex mixture of rubber, and pavement released from tires during use on road surfaces. Subsequent transport of the TRWP into freshwater sediments has raised some concern about the potential adverse effects on aquatic organisms. Previous studies have shown some potential for toxicity for tread particles, however, toxicity studies of TRWP collected from a road simulator system revealed no acute toxicity to green algae, daphnids, or fathead minnows at concentrations up to 10,000 mg/kg under conditions representative of receiving water bodies. In this study, the chronic toxicity of TRWP was evaluated in four aquatic species. Test animals were exposed to whole sediment spiked with TRWP at concentrations up to 10,000 mg/kg sediment or elutriates from spiked sediment. Exposure to TRWP spiked sediment caused mild growth inhibition in Chironomus dilutus but had no adverse effect on growth or reproduction in Hyalella azteca. Exposure to TRWP elutriates resulted in slightly diminished survival in larval Pimephales promelas but had no adverse effect on growth or reproduction in Ceriodaphnia dubia. No other endpoints in these species were affected. These results, together with previous studies demonstrating no acute toxicity of TRWP, indicate that under typical exposure conditions TRWP in sediments pose a low risk of toxicity to aquatic organisms.


Asunto(s)
Sedimentos Geológicos/química , Material Particulado/toxicidad , Goma/toxicidad , Contaminantes Químicos del Agua/toxicidad , Anfípodos/efectos de los fármacos , Anfípodos/crecimiento & desarrollo , Animales , Chironomidae/efectos de los fármacos , Chironomidae/crecimiento & desarrollo , Cladóceros/efectos de los fármacos , Cladóceros/crecimiento & desarrollo , Cyprinidae/crecimiento & desarrollo , Reproducción/efectos de los fármacos , Pruebas de Toxicidad Aguda
13.
Int J Environ Res Public Health ; 9(11): 4033-55, 2012 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-23202830

RESUMEN

Pyrolysis(pyr)-GC/MS analysis of characteristic thermal decomposition fragments has been previously used for qualitative fingerprinting of organic sources in environmental samples. A quantitative pyr-GC/MS method based on characteristic tire polymer pyrolysis products was developed for tread particle quantification in environmental matrices including soil, sediment, and air. The feasibility of quantitative pyr-GC/MS analysis of tread was confirmed in a method evaluation study using artificial soil spiked with known amounts of cryogenically generated tread. Tread concentration determined by blinded analyses was highly correlated (r2 ≥ 0.88) with the known tread spike concentration. Two critical refinements to the initial pyrolysis protocol were identified including use of an internal standard and quantification by the dimeric markers vinylcyclohexene and dipentene, which have good specificity for rubber polymer with no other appreciable environmental sources. A novel use of deuterated internal standards of similar polymeric structure was developed to correct the variable analyte recovery caused by sample size, matrix effects, and ion source variability. The resultant quantitative pyr-GC/MS protocol is reliable and transferable between laboratories.


Asunto(s)
Contaminantes Ambientales/análisis , Cromatografía de Gases y Espectrometría de Masas/métodos , Calor , Goma/análisis , Calibración , Deuterio/química , Control de Calidad , Estándares de Referencia , Sensibilidad y Especificidad
14.
Inhal Toxicol ; 24(13): 907-17, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23121300

RESUMEN

Tire and road wear particles (TRWP) are a component of ambient particulate matter (PM) produced from the interaction of tires with the roadway. Inhalation of PM has been associated with cardiopulmonary morbidities and mortalities thought to stem from pulmonary inflammation. To determine whether TRWP may contribute to these events, the effects of subacute inhalation of TRWP were evaluated in rats. TRWP were collected at a road simulator laboratory, aerosolized, and used to expose male and female Sprague-Dawley rats (n = 10/treatment group) at ~10, 40, or 100 µg/m³ TRWP via nose-only inhalation for 6 h/day for 28 days. Particle size distribution of the aerosolized TRWP was found to be within the respirable range for rats. Toxicity was assessed following OECD guidelines (TG 412). No TRWP-related effects were observed on survival, clinical observations, body or organ weights, gross pathology, food consumption, immune system endpoints, serum chemistry, or biochemical markers of inflammation or cytotoxicity. Rare to few focal areas of subacute inflammatory cell infiltration associated with TWRP exposure were observed in the lungs of one mid and four high exposure animals, but not the low-exposure animals. These alterations were minimal, widely scattered and considered insufficient in extent or severity to have an impact on pulmonary function. Furthermore, it is expected that these focal lesions would remain limited and may undergo resolution without long-term or progressive pulmonary alterations. Therefore, from this study we identified a no-observable-adverse-effect-level (NOAEL) of 112 µg/m³ of TRWP in rats for future use in risk assessment of TRWP.


Asunto(s)
Contaminantes Ambientales/toxicidad , Pulmón/efectos de los fármacos , Vehículos a Motor , Material Particulado/toxicidad , Administración por Inhalación , Animales , Líquido del Lavado Bronquioalveolar/química , Líquido del Lavado Bronquioalveolar/citología , Recuento de Células , Citocinas/metabolismo , Contaminantes Ambientales/química , Pulmón/metabolismo , Pulmón/patología , Nivel sin Efectos Adversos Observados , Tamaño de la Partícula , Material Particulado/química , Ratas , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/metabolismo , Pruebas de Toxicidad Subaguda
15.
Scand J Work Environ Health ; 37(2): 147-58, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20941467

RESUMEN

OBJECTIVES: Benzene is a natural constituent of crude oil and natural gas (0.1-3.0% by volume). Materials that are refined from crude oil and natural gas contain some residual benzene. Few datasets have appeared in the peer-reviewed literature characterizing exposures to benzene at specific refineries or during specific tasks. In this study, historical samples of airborne benzene collected from 1977-2005 at the ExxonMobil Baton Rouge, Louisiana, USA, docks were evaluated. METHODS: Workers were categorized into 11 job titles, and both non-task (≤180 min sample duration) and task-related (<180 min) benzene concentrations were assessed. Approximately 800 personal air samples (406 non-task and 397 task-related) were analyzed. RESULTS: Non-task samples showed that concentrations varied significantly across job titles and generally resulted from exposures during short-duration tasks such as tank sampling. The contractor - tankerman job title had the highest average concentration [N=38, mean 1.4 parts per million (ppm), standard deviation (SD) 2.6]. Task-related samples indicated that the highest exposures were associated with the disconnection of cargo loading hoses (N=134, mean 11 ppm, SD 32). Non-task samples for specific job categories showed that concentrations have decreased over the past 30 years. Recognizing the potential for benzene exposure, this facility has required workers to use respiratory protective equipment during selected tasks and activities; thus, the concentrations measured were likely greater than those that the employee actually experienced. CONCLUSIONS: This study provides a job title- and task-focused analysis of occupational exposure to benzene during dock facility operations that is insightful for understanding the Baton Rouge facility and others similar to it over the past 30 years.


Asunto(s)
Contaminantes Ocupacionales del Aire/análisis , Benceno/análisis , Industria Química , Exposición Profesional , Petróleo , Contaminantes Ocupacionales del Aire/efectos adversos , Benceno/efectos adversos , Humanos , Límite de Detección , Louisiana , Dispositivos de Protección Respiratoria
16.
J Expo Sci Environ Epidemiol ; 21(2): 169-85, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-19865071

RESUMEN

Although occupational benzene exposure of refinery workers has been studied for decades, no extensive analysis of historical industrial hygiene data has been performed focusing on airborne concentrations at specific refineries and tasks. This study characterizes benzene exposures at the ExxonMobil Baytown, TX, refinery from 1978 to 2006 to understand the variability in workers' exposures over time and during different job tasks. Exposures were grouped by operational status, job title, and tasks. More than 9000 industrial hygiene air samples were evaluated; approximately 4000 non-task (> 3 h) and 1000 task-related (< 3 h) personal samples were considered. Each sample was assigned to one of 27 job titles, 29 work areas, and 16 task bins (when applicable). Process technicians were sampled most frequently, resulting in the following mean benzene concentrations by area: hydrofiner (n=245, mean=1.3 p.p.m.), oil movements (n=286, mean=0.23 p.p.m.), reformer (n=575, mean=0.10 p.p.m.), tank farm (n=9, mean=0.65 p.p.m.), waste treatment (n=446, mean=0.13 p.p.m.), and other areas (n=460, mean=0.062 p.p.m.). The most frequently sampled task was sample collection (n=218, mean=0.40 p.p.m.). Job title and area did not significantly impact task-related exposures. Airborne concentrations were significantly lower after 1990 than before 1990. Results of this task-focused study may be useful when analyzing benzene exposures at other refineries.


Asunto(s)
Contaminantes Ocupacionales del Aire/análisis , Benceno/análisis , Industria Procesadora y de Extracción , Exposición Profesional/análisis , Petróleo , Contaminantes Ocupacionales del Aire/química , Historia del Siglo XX , Historia del Siglo XXI , Humanos , Exposición por Inhalación/análisis , Exposición Profesional/historia , Medición de Riesgo/métodos , Texas , Factores de Tiempo , Lugar de Trabajo
17.
Toxicol Ind Health ; 26(10): 671-90, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20643709

RESUMEN

While petroleum industry studies have indicated low benzene exposure potential for refinery workers, most provide limited data for assessing job or task-related benzene exposures. This study characterizes job and task-specific airborne benzene concentrations and variability over time for the ExxonMobil refinery in Joliet, Illinois from 1977 to 2006. A database of 2289 industrial hygiene air samples, including 1145 non-task (≥180 min) personal samples and 480 task-related (<180 min) personal samples, were analyzed. Samples were grouped by operational status, job, and task. Benzene concentrations were determined for each job category and task bin, with additional analyses conducted to determine whether benzene concentrations changed over time. The results indicate that the benzene concentrations for non-task and task samples were relatively low. For all non-task samples, the arithmetic mean benzene concentration was 0.12 part per million (ppm). The most frequently sampled workers (process technicians during routine operations) had an arithmetic mean benzene concentration of 0.038 ppm. The most frequently sampled task bin (blinding and breaking) had an arithmetic mean benzene concentration of 1.0 ppm. This study provides benzene air concentration data that can be used in combination with job histories to reconstruct historical benzene exposures for workers at the Joliet Refinery over the past 30 years.


Asunto(s)
Contaminantes Ocupacionales del Aire/análisis , Contaminación del Aire/estadística & datos numéricos , Benceno/análisis , Exposición Profesional/análisis , Industria Procesadora y de Extracción , Humanos , Illinois , Exposición Profesional/estadística & datos numéricos
18.
Int J Hyg Environ Health ; 213(4): 285-301, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20494616

RESUMEN

Because crude oil and refined petroleum products can contain benzene and benzene is considered a known carcinogen by numerous independent and governmental agencies, including the International Agency for Cancer Research, the petroleum industry has implemented exposure control programs for decades. As part of the benzene control programs, significant exposure assessments have been performed; both qualitatively and through quantitative measurements. In this study, we evaluated the airborne concentrations of benzene and their variability over time at the ExxonMobil refinery in Beaumont, TX between 1976 and 2007. The results of 5854 personal air samples are included in this analysis; 3761 were considered non-task (> or =180 min) personal samples, and 2093 were considered task-related (<180 min) personal samples. Dock and loading rack samples were analyzed separately from the refinery samples because in addition to refinery products, employees at the dock and loading rack also handled chemical plant products. In general, the non-task personal refinery air samples indicated that exposures of the past 30 years were generally below the occupational exposure limit of 1 ppm (mean=0.30 ppm, SD=3.1), were higher during routine (mean=0.32 ppm, SD=3.3) than turnaround operations (mean=0.16 ppm, SD=0.87), and decreased slightly over time. The job sampled most frequently during routine operations was that of process technician, and, as broken down by area, resulted in the following mean benzene air concentrations: coker (n=146, mean=0.014 ppm, SD=0.036), lube extraction unit (n=31, mean<0.070 ppm), pipestills (n=136, mean=0.12, SD=0.47), waste treatment (n=107, mean=0.20, SD=0.28), and all other areas (n=1115, mean=0.059 ppm, SD=0.36). Task-based samples indicated that the highest exposures resulted from the tank cleaning tasks, although the overall task mean benzene air concentration was 1.4 ppm during routine operations. The most frequently sampled task during routine operations was blinding and breaking, and the mean benzene air concentrations associated with this task were statistically higher in the reformer area of the refinery (n=311, mean=3.2 ppm, SD=7.9) than in all other areas (n=200, mean=0.92 ppm, SD=3.1). However, task-related exposures were found to be statistically similar across job categories for a given task. This study thus provides a task-focused analysis for occupational exposure to benzene during refinery operations, and will be useful for understanding exposures at this refinery.


Asunto(s)
Contaminantes Atmosféricos/análisis , Benceno/análisis , Exposición Profesional/análisis , Petróleo , Monitoreo del Ambiente , Industria Procesadora y de Extracción , Humanos , Texas
19.
Sci Total Environ ; 408(3): 652-9, 2010 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-19896165

RESUMEN

The purpose of this study was to characterize the physical and chemical properties of particles generated from the interaction of tires and road surfaces. Morphology, size distribution, and chemical composition were compared between particles generated using different methods, including on-road collection, laboratory generation under simulated driving conditions, and cryogenic breaking of tread rubber. Both on-road collected and laboratory generated particles exhibited the elongated shape typical of tire wear particles, whereas tread particles were more angular. Despite similar morphology for the on-road collected and the laboratory generated particles, the former were smaller on average. It is not clear at this stage if the difference is significant to the physical and chemical behavior of the particles. The chemical composition of the particles differed, with on-road generated particles containing chemical contributions from sources other than tires, such as pavement or particulates generated from other traffic-related sources. Understanding the differences between these particles is essential in apportioning contaminant contributions to the environment between tires, roadways, and other sources, and evaluating the representativeness of toxicity studies using different types of particulate generated.


Asunto(s)
Monitoreo del Ambiente/métodos , Contaminantes Ambientales , Vehículos a Motor , Material Particulado , Goma , Contaminantes Ambientales/análisis , Contaminantes Ambientales/química , Contaminantes Ambientales/toxicidad , Tamaño de la Partícula , Material Particulado/análisis , Material Particulado/química , Material Particulado/toxicidad , Medición de Riesgo , Goma/análisis , Goma/química , Goma/toxicidad
20.
J Occup Environ Hyg ; 6(9): 517-29, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19544135

RESUMEN

Because crude oil contains up to 3% benzene and there is an association between high chronic exposure to appreciable concentrations of benzene and acute myelogenous leukemia, exposure of refinery workers has been studied for many years. To date, no extensive industrial hygiene exposure analyses for historical benzene exposure have been performed, and none have focused on the airborne concentrations in the workplace at specific refineries or for specific tasks. In this study, the authors evaluated the airborne concentrations of benzene and their variability over time at the ExxonMobil refinery in Baton Rouge between 1977 and 2005. Refinery workers were categorized into 117 worker groups using company job descriptions. These 117 groups were further collapsed into 25 job categories based on similarity of measured exposure results. Results of 5289 personal air samples are included in this analysis; 3403 were considered nontask (>or= 180 min) personal samples, and 830 were considered task-related (< 180 min) personal samples; the remainder did not fit in either category. In general, nontask personal air samples indicated that exposures of the past 30 years were generally below the occupational exposure limit of 1 ppm, but there was only a small, decreasing temporal trend in the concentrations. The job sampled most frequently during routine operations was process technician and, as broken down by area, resulted in the following mean benzene concentrations: analyzers (mean = 0.12 ppm), coker (mean = 0.013 ppm), hydrofiner (mean = 0.0054 ppm), lube blending and storage (mean = 0.010 ppm), waste treatment (mean = 0.092 ppm), and all other areas (mean = 0.055 ppm). Task-based samples indicated that the highest exposures resulted from the sampling tasks, specifically from those performed on process materials; in general, though, even these tasks had concentrations well below the STEL of 5 ppm. The most frequently sampled task was gauging (mean = 0.12 ppm). Task-related exposures were also similar across job categories for a given task, with a few exceptions. This study thus provides a task-focused analysis for occupational exposure to benzene during refinery operations, which can be insightful for understanding exposures at this refinery and perhaps others operated since about 1975.


Asunto(s)
Contaminantes Ocupacionales del Aire/análisis , Benceno/análisis , Industria Procesadora y de Extracción , Exposición Profesional/análisis , Petróleo , Industria Procesadora y de Extracción/historia , Historia del Siglo XX , Humanos , Exposición por Inhalación/análisis , Exposición por Inhalación/clasificación , Louisiana , Exposición Profesional/clasificación , Tiempo , Lugar de Trabajo/clasificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA