Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
bioRxiv ; 2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38746333

RESUMEN

While Immune checkpoint inhibition (ICI) therapy shows significant efficacy in metastatic melanoma, only about 50% respond, lacking reliable predictive methods. We introduce a panel of six proteins aimed at predicting response to ICI therapy. Evaluating previously reported proteins in two untreated melanoma cohorts, we used a published predictive model (EaSIeR score) to identify potential proteins distinguishing responders and non-responders. Six proteins initially identified in the ICI cohort correlated with predicted response in the untreated cohort. Additionally, three proteins correlated with patient survival, both at the protein, and at the transcript levels, in an independent immunotherapy treated cohort. Our study identifies predictive biomarkers across three melanoma cohorts, suggesting their use in therapeutic decision-making.

2.
J Biotechnol ; 389: 61-67, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38692356

RESUMEN

BACKGROUND: Testicular cancer is the most common solid malignancy among men aged 15-35. Radical orchiectomy and platinum-based chemotherapy (BEP) are curative in the majority of patients, including advanced, metastatic cases. According to current urooncology guidelines all non-seminoma patients harbouring post-chemotherapy residual masses of ≥ 1 cm should undergo salvage retroperitoneal lymph node dissection (RPLND). However, only 10% of residual tumors contain viable disease. OBJECTIVE: To assess patient outcomes and complications considering different treatment regimens and clinical characteristics. MATERIALS AND METHODS: In a retrospective cross-sectional study patients (n=127) who underwent postchemotherapy RPLND between 2007 and 2023 at our referral center were evaluated. The patients received systemic treatment at various oncology centers. The number of BEP cycles received were occasionally different from standard. Only patients with normal postchemotherapy serum tumor markers and primary testicular or extragonadal germ cell neoplasms were included. Treatment groups were established according to the number of BEP cycles received, and the extent of RPLND (bilateral or modified template). Treatment outcomes and complications were assessed. RESULTS: Standard 3-4 courses of BEP were received by 100 (78,7%) patients, while 11 (8,7%) patients underwent less, and 16 (12,6%) more courses than standard. On histopathologic evaluation viable germ cell tumor, teratoma, and necrosis/fibrosis was present in 26 (20,5%), 67 (52,7%) and 34 (26,8%) of specimen, respectively. In the 5-6 BEP series subgroup high rate of viable disease (37,5%) was found and significantly more nephrectomies were performed, than other chemotherapy subgroups. Extratesticular GCT, viable disease in residual mass or progression after RPLND indicated lower survival. Mild (Clavien-Dindo I-II) or no postoperative complications were reported in 93,7% of cases. CONCLUSIONS: The study suggests no significant benefit from exceeding 3-4 courses of BEP. Timely salvage RPLND should be performed in high volume centers for optimal treatment outcomes with acceptable complication rates. Adherence to the Heidenreich criteria is advisable where practical.


Asunto(s)
Neoplasias de Células Germinales y Embrionarias , Neoplasias Testiculares , Humanos , Masculino , Neoplasias Testiculares/patología , Neoplasias Testiculares/tratamiento farmacológico , Neoplasias Testiculares/terapia , Neoplasias de Células Germinales y Embrionarias/tratamiento farmacológico , Neoplasias de Células Germinales y Embrionarias/terapia , Neoplasias de Células Germinales y Embrionarias/patología , Estudios Retrospectivos , Adulto , Estudios Transversales , Adulto Joven , Resultado del Tratamiento , Escisión del Ganglio Linfático , Persona de Mediana Edad , Adolescente , Neoplasia Residual , Orquiectomía , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Terapia Combinada
3.
bioRxiv ; 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38545623

RESUMEN

The utilization of PD1 and CTLA4 inhibitors has revolutionized the treatment of malignant melanoma (MM). However, resistance to targeted and immune-checkpoint-based therapies still poses a significant problem. Here we mine large scale MM proteogenomic data integrating it with MM cell line dependency screen, and drug sensitivity data to identify druggable targets and forecast treatment efficacy and resistance. Leveraging protein profiles from established MM subtypes and molecular structures of 82 cancer treatment drugs, we identified nine candidate hub proteins, mTOR, FYN, PIK3CB, EGFR, MAPK3, MAP4K1, MAP2K1, SRC and AKT1, across five distinct MM subtypes. These proteins serve as potential drug targets applicable to one or multiple MM subtypes. By analyzing transcriptomic data from 48 publicly accessible melanoma cell lines sourced from Achilles and CRISPR dependency screens, we forecasted 162 potentially targetable genes. We also identified genetic resistance in 260 genes across at least one melanoma subtype. In addition, we employed publicly available compound sensitivity data (Cancer Therapeutics Response Portal, CTRPv2) on the cell lines to assess the correlation of compound effectiveness within each subtype. We have identified 20 compounds exhibiting potential drug impact in at least one melanoma subtype. Remarkably, employing this unbiased approach, we have uncovered compounds targeting ferroptosis, that demonstrate a striking 30x fold difference in sensitivity among different subtypes. This implies that the proteogenomic classification of melanoma has the potential to predict sensitivity to ferroptosis compounds. Our results suggest innovative and novel therapeutic strategies by stratifying melanoma samples through proteomic profiling, offering a spectrum of novel therapeutic interventions and prospects for combination therapy. Highlights: (1) Proteogenomic subtype classification can define the landscape of genetic dependencies in melanoma (2) Nine proteins from molecular subtypes were identified as potential drug targets for specified MM patients (3) 20 compounds identified that show potential effectiveness in at least one melanoma subtype (4) Proteogenomics can predict specific ferroptosis inducers, HDAC, and RTK Inhibitor sensitivity in melanoma subtypes.

4.
J Biotechnol ; 380: 20-28, 2024 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-38122830

RESUMEN

Cancer stands as one of the most common and lethal diseases, imposing a substantial burden on global mortality rates. Breast cancer is distinct from other forms of cancer in which it is the primary cause of death for women. Early detection of breast cancer can significantly lower the risk of mortality, improving the prognosis for those who are affected. The death rate of breast cancer has been steadily rising, according to epidemiological data, especially since the COVID-19 pandemic. This emphasizes the necessity of sensitive and precise technologies that can be utilized in early breast cancer diagnosis. In this process, biomarkers play a pivotal role by facilitating the early detection and diagnosis of breast cancer. Currently, a wide variety of cancer biomarkers have been identified, improving the accuracy of cancer diagnosis. These biomarkers can be applied in liquid biopsies as well as on solid tissues. In the context of breast cancer, biomarkers are particularly valuable for determining who is predisposed to the disease, predicting prognosis at the time of diagnosis, and selecting the best course of therapy. This review comprehensively explores the recently developed gene-based biomarkers from biofluids that are used in the context of breast cancer, as well as the conventional and cutting-edge techniques that have been employed for breast cancer diagnosis.


Asunto(s)
Neoplasias de la Mama , Femenino , Humanos , Neoplasias de la Mama/diagnóstico , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Pandemias , Biopsia Líquida/métodos , Pronóstico , Biomarcadores de Tumor/genética
5.
Int J Mol Sci ; 24(21)2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37958852

RESUMEN

We aimed to investigate the contribution of co-translational protein aggregation to the chemotherapy resistance of tumor cells. Increased co-translational protein aggregation reflects altered translation regulation that may have the potential to buffer transcription under genotoxic stress. As an indicator for such an event, we followed the cytoplasmic aggregation of RPB1, the aggregation-prone largest subunit of RNA polymerase II, in biopsy samples taken from patients with invasive carcinoma of no special type. RPB1 frequently aggregates co-translationally in the absence of proper HSP90 chaperone function or in ribosome mutant cells as revealed formerly in yeast. We found that cytoplasmic foci of RPB1 occur in larger sizes in tumors that showed no regression after therapy. Based on these results, we propose that monitoring the cytoplasmic aggregation of RPB1 may be suitable for determining-from biopsy samples taken before treatment-the effectiveness of neoadjuvant chemotherapy.


Asunto(s)
ARN Polimerasa II , Proteínas de Saccharomyces cerevisiae , Humanos , ARN Polimerasa II/genética , Terapia Neoadyuvante , Agregado de Proteínas , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
6.
Biomolecules ; 13(10)2023 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-37892205

RESUMEN

DNA repair pathways trigger robust downstream responses, making it challenging to select suitable reference genes for comparative studies. In this study, our goal was to identify the most suitable housekeeping genes to perform comparable molecular analyses for DNA damage-related studies. Choosing the most applicable reference genes is important in any kind of target gene expression-related quantitative study, since using the housekeeping genes improperly may result in false data interpretation and inaccurate conclusions. We evaluated the expressional changes of eight well-known housekeeping genes (i.e., 18S rRNA, B2M, eEF1α1, GAPDH, GUSB, HPRT1, PPIA, and TBP) following treatment with the DNA-damaging agents that are most frequently used: ultraviolet B (UVB) non-ionizing irradiation, neocarzinostatin (NCS), and actinomycin D (ActD). To reveal the significant changes in the expression of each gene and to determine which appear to be the most acceptable ones for normalization of real-time quantitative polymerase chain reaction (RT-qPCR) data, comparative and statistical algorithms (such as absolute quantification, Wilcoxon Rank Sum Test, and independent samples T-test) were conducted. Our findings clearly demonstrate that the genes commonly employed as reference candidates exhibit substantial expression variability, and therefore, careful consideration must be taken when designing the experimental setup for an accurate and reproducible normalization of RT-qPCR data. We used the U2OS cell line since it is generally accepted and used in the field of DNA repair to study DNA damage-induced cellular responses. Based on our current data in U2OS cells, we suggest using 18S rRNA, eEF1α1, GAPDH, GUSB, and HPRT1 genes for UVB-induced DNA damage-related studies. B2M, HPRT1, and TBP genes are recommended for NCS treatment, while 18S rRNA, B2M, and PPIA genes can be used as suitable internal controls in RT-qPCR experiments for ActD treatment. In summary, this is the first systematic study using a U2OS cell culture system that offers convincing evidence for housekeeping gene selection following treatment with various DNA-damaging agents. Here, we unravel an indispensable issue for performing and assessing trustworthy DNA damage-related differential gene expressional analyses, and we create a "zero set" of potential reference gene candidates.


Asunto(s)
ADN , Genes Esenciales , Humanos , ARN Ribosómico 18S/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Técnicas de Cultivo de Célula , Perfilación de la Expresión Génica
7.
Cancers (Basel) ; 15(3)2023 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-36765669

RESUMEN

Matrix metalloproteinase-9 (MMP-9) degrades the extracellular matrix, contributes to tumour cell invasion and metastasis, and its elevated level in brain tumour tissues indicates poor prognosis. High-risk tissue biopsy can be replaced by liquid biopsy; however, the blood-brain barrier (BBB) prevents tumour-associated components from entering the peripheral blood, making the development of blood-based biomarkers challenging. Therefore, we examined the MMP-9 content of small extracellular vesicles (sEVs)-which can cross the BBB and are stable in body fluids-to characterise tumours with different invasion capacity. From four patient groups (glioblastoma multiforme, brain metastases of lung cancer, meningioma, and lumbar disc herniation as controls), 222 serum-derived sEV samples were evaluated. After isolating and characterising sEVs, their MMP-9 content was measured by ELISA and assessed statistically (correlation, paired t-test, Welch's test, ANOVA, ROC). We found that the MMP-9 content of sEVs is independent of gender and age, but is affected by surgical intervention, treatment, and recurrence. We found a relation between low MMP-9 level in sEVs (<28 ppm) and improved survival (8-month advantage) of glioblastoma patients, and MMP-9 levels showed a positive correlation with aggressiveness. These findings suggest that vesicular MMP-9 level might be a useful prognostic marker for brain tumours.

8.
Cells ; 11(19)2022 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-36231067

RESUMEN

The quantitative analysis of datasets achieved by single molecule localization microscopy is vital for studying the structure of subcellular organizations. Cluster analysis has emerged as a multi-faceted tool in the structural analysis of localization datasets. However, the results it produces greatly depend on the set parameters, and the process can be computationally intensive. Here we present a new approach for structural analysis using lacunarity. Unlike cluster analysis, lacunarity can be calculated quickly while providing definitive information about the structure of the localizations. Using simulated data, we demonstrate how lacunarity results can be interpreted. We use these interpretations to compare our lacunarity analysis with our previous cluster analysis-based results in the field of DNA repair, showing the new algorithm's efficiency.


Asunto(s)
Microscopía , Imagen Individual de Molécula , Análisis por Conglomerados , Reparación del ADN , Microscopía/métodos
9.
Cells ; 11(17)2022 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-36078129

RESUMEN

Breast cancer is the most frequent cancer with a high fatality rate amongst women worldwide. Diagnosing at an early stage is challenging, and due to the limitations of the currently used techniques, including mammography and imaging diagnostics, it still remains unascertained. Serum biomarkers can be a solution for this as they can be isolated in a less painful, more cost-effective, and minimally invasive manner. In this study, we shed light on the relevant role of multiple microRNAs (miRNAs) as potential biomarkers in breast cancer diagnosis. We monitored the expressional changes of 15 pre-selected miRNAs in a large cohort, including 65 patients with breast cancer and 42 healthy individuals. We performed thorough statistical analyses on the cohort sample set and determined the diagnostic accuracy of individual and multiple miRNAs. Our study reveals a potential improvement in diagnostics by implicating the monitoring of miR-15a+miR-16+miR-221 expression in breast cancer management.


Asunto(s)
Neoplasias de la Mama , MicroARNs , Biomarcadores de Tumor/metabolismo , Mama/metabolismo , Neoplasias de la Mama/diagnóstico , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Femenino , Humanos , MicroARNs/metabolismo
10.
PLoS One ; 17(5): e0267615, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35511765

RESUMEN

DNA double-strand breaks are one of the most deleterious lesions for the cells, therefore understanding the macromolecular interactions of the DNA repair-related mechanisms is essential. DNA damage triggers transcription silencing at the damage site, leading to the removal of the elongating RNA polymerase II (S2P RNAPII) from this locus, which provides accessibility for the repair factors to the lesion. We previously demonstrated that following transcription block, p53 plays a pivotal role in transcription elongation by interacting with S2P RNAPII. In the current study, we reveal that p53 is involved in the fine-tune regulation of S2P RNAPII ubiquitylation. Furthermore, we emphasize the potential role of p53 in delaying the premature ubiquitylation and the subsequent chromatin removal of S2P RNAPII as a response to transcription block.


Asunto(s)
ARN Polimerasa II , Proteína p53 Supresora de Tumor , Daño del ADN , Reparación del ADN , ARN Polimerasa II/metabolismo , Transcripción Genética , Proteína p53 Supresora de Tumor/genética , Ubiquitinación
11.
Pathol Oncol Res ; 28: 1610345, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35586183

RESUMEN

Routine molecular tumour diagnostics are augmented by DNA-based qualitative and quantitative molecular techniques detecting mutations of DNA. However, in the past decade, it has been unravelled that the phenotype of cancer, as it's an extremely complex disease, cannot be fully described and explained by single or multiple genetic variants affecting only the coding regions of the genes. Moreover, studying the manifestation of these somatic mutations and the altered transcription programming-driven by genomic rearrangements, dysregulation of DNA methylation and epigenetic landscape-standing behind the tumorigenesis and detecting these changes could provide a more detailed characterisation of the tumour phenotype. Consequently, novel comparative cancer diagnostic pipelines, including DNA- and RNA-based approaches, are needed for a global assessment of cancer patients. Here we report, that by monitoring the expression patterns of key tumour driver genes by qPCR, the normal and the tumorous samples can be separated into distinct categories. Furthermore, we also prove that by examining the transcription signatures of frequently affected genes at 3p25, 3p21 and 9p21.3 genomic regions, the ccRCC (clear cell renal cell carcinoma) and non-tumorous kidney tissues can be distinguished based on the mRNA level of the selected genes. Our results open new diagnostics possibilities where the mRNA signatures of tumour drivers can supplement the DNA-based approaches providing a more precise diagnostics opportunity leading to determine more precise therapeutic protocols.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Carcinoma de Células Renales/diagnóstico , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/metabolismo , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Neoplasias Renales/diagnóstico , Neoplasias Renales/genética , Neoplasias Renales/metabolismo , ARN Mensajero , Transcripción Genética/genética
12.
Transl Oncol ; 20: 101420, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35417813

RESUMEN

Patients diagnosed with clear cell renal cell carcinoma (ccRCC) have poor prognosis for recurrence and approximately 30-40% of them will later develop metastases. For this reason, the appropriate diagnosis and the more detailed molecular characterisation of the primary tumour, including its susceptibility to metastasis, are crucial to select the proper adjuvant therapy by which the most prosperous outcome can be achieved. Nowadays, clinicopathological variables are used for classification of the tumours. Apart from these, molecular biomarkers are also necessary to improve risk classification, which would be the most beneficial amongst modern adjuvant therapies. As a potential molecular biomarker, to follow the transcriptional kinetics in ccRCC patients (n=30), we analysed epigenetic changes (γH2A.X, H3K4me3, and H3K9me3) and the alterations in the level of RNA polymerase II (RNAPII) by immunohistochemical staining on dissected tissue sections. The variabilities between the tumorous and non-tumorous parts of the tissue were detected using quantitative image analysis by monitoring 30 cells from different positions of either the tumorous or the non-tumorous part of the tissue sections. Data obtained from the analyses were used to identify potential prognostic features and to associate them with the progression. These markers might have a value to predict patient outcomes based on their individual cellular background. These results also support that detection of any alteration in the level of H3K4me3, H3K9me3, and γH2A.X can account for valuable information for presuming the progression of ccRCC and the clinical benefits to select the most efficient personalised therapy.

13.
Sci Rep ; 12(1): 5870, 2022 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-35393473

RESUMEN

Ubiquitylation is critical for preventing aberrant DNA repair and for efficient maintenance of genome stability. As deubiquitylases (DUBs) counteract ubiquitylation, they must have a great influence on many biological processes, including DNA damage response. To elucidate the role of DUBs in DNA repair in Drosophila melanogaster, systematic siRNA screening was applied to identify DUBs with a reduced survival rate following exposure to ultraviolet and X-ray radiations. As a secondary validation, we applied the direct repeat (DR)-white reporter system with which we induced site-specific DSBs and affirmed the importance of the DUBs Ovarian tumor domain-containing deubiquitinating enzyme 1 (Otu1), Ubiquitin carboxyl-terminal hydrolase 5 (Usp5), and Ubiquitin carboxyl-terminal hydrolase 34 (Usp34) in DSB repair pathways using Drosophila. Our results indicate that the loss of Otu1 and Usp5 induces strong position effect variegation in Drosophila eye following I-SceI-induced DSB deployment. Otu1 and Usp5 are essential in DNA damage-induced cellular response, and both DUBs are required for the fine-tuned regulation of the non-homologous end joining pathway. Furthermore, the Drosophila DR-white assay demonstrated that homologous recombination does not occur in the absence of Usp34, indicating an indispensable role of Usp34 in this process.


Asunto(s)
Reparación del ADN , Proteínas de Drosophila , Drosophila melanogaster , Proteasas Ubiquitina-Específicas , Animales , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Hidrolasas/metabolismo , Ubiquitina/metabolismo , Proteasas Ubiquitina-Específicas/genética , Proteasas Ubiquitina-Específicas/metabolismo , Ubiquitinación
14.
Mutat Res Rev Mutat Res ; 788: 108397, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34893162

RESUMEN

DNA double-strand breaks (DSBs) are one of the most frequent causes of initiating cancerous malformations, therefore, to reduce the risk, cells have developed sophisticated DNA repair mechanisms. These pathways ensure proper cellular function and genome integrity. However, any alteration or malfunction during DNA repair can influence cellular homeostasis, as improper recognition of the DNA damage or dysregulation of the repair process can lead to genome instability. Several powerful methods have been established to extend our current knowledge in the field of DNA repair. For this reason, in this review, we focus on the methods used to study DSB repair, and we summarize the advantages and disadvantages of the most commonly used techniques currently available for the site-specific induction of DSBs and the subsequent tracking of the repair processes in human cells. We highlight methods that are suitable for site-specific DSB induction (by restriction endonucleases, CRISPR-mediated DSB induction and laser microirradiation) as well as approaches [e.g., fluorescence-, confocal- and super-resolution microscopy, chromatin immunoprecipitation (ChIP), DSB-labeling and sequencing techniques] to visualize and follow the kinetics of DSB repair.


Asunto(s)
Roturas del ADN de Doble Cadena , Animales , Inmunoprecipitación de Cromatina/métodos , Humanos , Microscopía Fluorescente/métodos , Mutagénesis , Imagen Individual de Molécula/métodos
15.
EMBO J ; 40(23): e108271, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34605059

RESUMEN

Mutations in the gene encoding the CDKL5 kinase are among the most common genetic causes of childhood epilepsy and can also give rise to the severe neurodevelopmental condition CDD (CDKL5 deficiency disorder). Despite its importance for human health, the phosphorylation targets and cellular roles of CDKL5 are poorly understood, especially in the cell nucleus. Here, we report that CDKL5 is recruited to sites of DNA damage in actively transcribed regions of the nucleus. A quantitative phosphoproteomic screen for nuclear CDKL5 substrates reveals a network of transcriptional regulators including Elongin A (ELOA), phosphorylated on a specific CDKL5 consensus motif. Recruitment of CDKL5 and ELOA to damaged DNA, and subsequent phosphorylation of ELOA, requires both active transcription and the synthesis of poly(ADP-ribose) (PAR), to which CDKL5 can bind. Critically, CDKL5 kinase activity is essential for the transcriptional silencing of genes induced by DNA double-strand breaks. Thus, CDKL5 is a DNA damage-sensing, PAR-controlled transcriptional modulator, a finding with implications for understanding the molecular basis of CDKL5-related diseases.


Asunto(s)
Roturas del ADN de Doble Cadena , Daño del ADN , Elonguina/metabolismo , Neuronas/patología , Fosfoproteínas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Activación Transcripcional , Elonguina/genética , Síndromes Epilépticos/genética , Síndromes Epilépticos/metabolismo , Síndromes Epilépticos/patología , Humanos , Mutación , Neuronas/metabolismo , Fosfoproteínas/genética , Fosforilación , Poli Adenosina Difosfato Ribosa/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Espasmos Infantiles/genética , Espasmos Infantiles/metabolismo , Espasmos Infantiles/patología
16.
J Vis Exp ; (174)2021 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-34487116

RESUMEN

Cells are continuously exposed to various DNA damaging agents, inducing different cellular responses. Applying biochemical and genetic approaches is essential in revealing cellular events associated with the recruitment and assembly of DNA repair complexes at the site of DNA damage. In the last few years, several powerful tools have been developed to induce site-specific DNA damage. Moreover, novel seminal techniques allow us to study these processes at the single-cell resolution level using both fixed and living cells. Although these techniques have been used to study various biological processes, herein we present the most widely used protocols in the field of DNA repair, Fluorescence Immunostaining (IF) and Chromatin Immunoprecipitation (ChIP), which in combination with endonuclease-based site-specific DNA damage make it possible to visualize and quantify the genomic occupancy of DNA repair factors in a directed and regulated fashion, respectively. These techniques provide powerful tools for the researchers to identify novel proteins bound to the damaged genomic locus as well as their post-translational modifications necessary for their fine-tune regulation during DNA repair.


Asunto(s)
Daño del ADN , Endonucleasas , Cromatina , Inmunoprecipitación de Cromatina , ADN/genética , Reparación del ADN , Endonucleasas/genética
17.
Int J Mol Sci ; 22(16)2021 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-34445206

RESUMEN

UV-induced DNA damage response and repair are extensively studied processes, as any malfunction in these pathways contributes to the activation of tumorigenesis. Although several proteins involved in these cellular mechanisms have been described, the entire repair cascade has remained unexplored. To identify new players in UV-induced repair, we performed a microarray screen, in which we found SerpinB10 (SPB10, Bomapin) as one of the most dramatically upregulated genes following UV irradiation. Here, we demonstrated that an increased mRNA level of SPB10 is a general cellular response following UV irradiation regardless of the cell type. We showed that although SPB10 is implicated in the UV-induced cellular response, it has no indispensable function in cell survival upon UV irradiation. Nonetheless, we revealed that SPB10 might be involved in delaying the duration of DNA repair in interphase and also in S-phase cells. Additionally, we also highlighted the interaction between SPB10 and H3. Based on our results, it seems that SPB10 protein is implicated in UV-induced stress as a "quality control protein", presumably by slowing down the repair process.


Asunto(s)
Daño del ADN , Reparación del ADN/efectos de la radiación , Fase S/efectos de la radiación , Serpinas/metabolismo , Rayos Ultravioleta/efectos adversos , Línea Celular Tumoral , Humanos , Serpinas/genética
18.
Mol Ther Methods Clin Dev ; 20: 218-226, 2021 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-33426148

RESUMEN

We developed an orally administered, engineered, bacterium-based, RNA interference-mediated therapeutic method to significantly reduce the symptoms in the most frequently used animal model of inflammatory bowel disease. This bacterium-mediated RNA interference strategy was based on the genomically stable, non-pathogenic E. coli MDS42 strain, which was engineered to constitutively produce invasin and the listeriolysin O cytolysin. These proteins enabled the bacteria first to invade the colon epithelium and then degrade in the phagosome. This allowed the delivery of a plasmid encoding small hairpin RNA (shRNA) targeting tumor necrosis factor (TNF) into the cytoplasm of the target cells. The expression levels of TNF and other cytokines significantly decreased upon this treatment in dextran sulfate sodium (DSS)-induced colitis, and the degree of inflammation was significantly reduced. With further safety modifications this method could serve as a safe and side effect-free alternative to biologicals targeting TNF or other inflammatory mediators.

19.
Cancers (Basel) ; 12(6)2020 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-32570875

RESUMEN

The proper function of DNA repair is indispensable for eukaryotic cells since accumulation of DNA damages leads to genome instability and is a major cause of oncogenesis. Ubiquitylation and deubiquitylation play a pivotal role in the precise regulation of DNA repair pathways by coordinating the recruitment and removal of repair proteins at the damaged site. Here, we summarize the most important post-translational modifications (PTMs) involved in DNA double-strand break repair. Although we highlight the most relevant PTMs, we focus principally on ubiquitylation-related processes since these are the most robust regulatory pathways among those of DNA repair.

20.
Cells ; 9(6)2020 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-32549338

RESUMEN

Nucleotide excision repair (NER) is a versatile DNA repair pathway which can be activated in response to a broad spectrum of UV-induced DNA damage, such as bulky adducts, including cyclobutane-pyrimidine dimers (CPDs) and 6-4 photoproducts (6-4PPs). Based on the genomic position of the lesion, two sub-pathways can be defined: (I) global genomic NER (GG-NER), involved in the ablation of damage throughout the whole genome regardless of the transcription activity of the damaged DNA locus, and (II) transcription-coupled NER (TC-NER), activated at DNA regions where RNAPII-mediated transcription takes place. These processes are tightly regulated by coordinated mechanisms, including post-translational modifications (PTMs). The fine-tuning modulation of the balance between the proteins, responsible for PTMs, is essential to maintain genome integrity and to prevent tumorigenesis. In this review, apart from the other substantial PTMs (SUMOylation, PARylation) related to NER, we principally focus on reversible ubiquitylation, which involves E3 ubiquitin ligase and deubiquitylase (DUB) enzymes responsible for the spatiotemporally precise regulation of NER.


Asunto(s)
Daño del ADN/fisiología , Reparación del ADN/fisiología , Procesamiento Proteico-Postraduccional/genética , ADN/metabolismo , Reparación del ADN/genética , Humanos , Dímeros de Pirimidina/genética , Dímeros de Pirimidina/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...